Уравнение гармонических колебаний в дифференциальной форме

Уравнение гармонических колебаний в дифференциальной форме

Первая (скорость) и вторая (ускорение) производные по времени от гармонически колеблющейся величины s также совершают гармонические колебания с той же циклической частотой:

Из последнего уравнения видно, что s удовлетворяет уравнению

или

Это уравнение называется дифференциальным уравнением гармони­ческих колебаний. Его решение:

4. Метод векторных диаграмм.

армонические колебания изображаются графическиметодом вращающегося вектора амплитуды или методом векторных диаграмм.

Из произвольной точки О, выбранной на оси х, под углом φ, равным начальной фазе

колебания, откладывается вектор А, модуль которого равен амплитуде А, рассматриваемого колебания. Если этот вектор будет вращаться

вокруг точки О с угловой скоростью со, то проекция вектора на ось х будет совершать колебания по закону s = cos(ωt + φ).

5. Экспоненциальная форма записи гармонических колебаний.

Согласно формуле Эйлера для комплексных чисел

где — мнимая единица. Поэтому уравнение гармонического колебанияs = A·cos(ωt +φ) можно записать в комплексной экспоненциальной форме:

Физический смысл имеет только вещественная часть комплексной функции , которая и представляет собой гармоническое колебание:

Re() = A cos(ωt +φ) = s

6. Механические гармонические колебания.

Пусть материальная точка совершает прямолинейные гармонические

олебания вдоль осих около положения равновесия принятого, за начало координат. Тогда для колеблющейся точки

Скорость:= = -Аωcost + φ + )

a = = =Аω 2 cost + φ +)

Амплитуды скорости и ускорения равны Aω и Aω 2

Фаза скорости отличается от фазы смещения на , а фаза ускорения на.

Сила, действующая на колеблющуюся материальную точку массой т равна

Таким образом, сила пропорциональна смещению материальной точки и

направлена в сторону, противоположную смещению (к положению равновесия).

Такая зависимость от смещения характерна для упругих сил и поэтому силы,

которые аналогичным образом зависят от смещения, называются

7. Энергия материальной точки, совершающей гармонические колебания.

Кинетическая энергия материальной точки:

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием квазиупругой силы:

Полная энергия:

остается постоянной, с течением времени происходит только превращение кинетической энергии в потенциальную и обратно.

8. Гармонический осциллятор.

Гармоническим осциллятором называется система, совершающая колебания, описываемые дифференциальным уравнением

Примерами гармонического осциллятора являются пружинный, математический и физический маятники и электрический колебательный контур.

9. Пружинный маятник.

Пружинный маятник — это груз массой т, подвешенный на абсолютно упругой пружине и совершающий гармонические колебания под действием упругой силы

=

где жесткость пружины.

Уравнение движения маятника

или

Сравнивая это уравнение с уравнением движения

гармонического осциллятора , мы видим, что пружинный маятник совершает колебания по закону с циклической частотой и периодом:

Потенциальная энергия пружинного маятника:

Если на маятник действует сила трения, пропорциональная скорости ,где r коэффициент сопротивления, то колебания маятника будут

затухающими и закон движения маятника будет иметь вид или

Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).

Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.

В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F1 +F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:

где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.

Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.

В нашем примере сила по своей природе упругая. Может случиться, что сила иного происхождения обнаруживает такую же закономерность, то есть оказывается равной — kx. Силы такого вида, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.

Читайте также:  Сколько стоят планшеты в мтс

Уравнение второго закона Ньютона для шарика имеет вид:

, или .

Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату

некоторой величины w0, т.е. мы можем ввести обозначение . Тогда получим

Таким образом, движение шарика под действием силы вида (1) описывается линейным однородным дифференциальным уравнением второго порядка.

Легко убедиться подстановкой, что решение уравнения имеет вид:

где (w t + a) = a — фаза колебаний; a — начальная фаза при t = 0; w — круговая частота колебаний; A — их амплитуда.

Итак, смещение x изменяется со временем по закону косинуса.

Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:

,

Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):

EП.

Складывая (4) и (5), с учетом соотношения , получим:

E = EK + EП = .

Итак, смещение x изменяется со временем по закону косинуса.

Следовательно, движение системы, находящейся под действием силы вида f = — kx, представляет собой гармоническое колебание.

График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:

Электрический колебательный контур. Уравнение собственных колебаний ,формула Томсона. Взаимопревращения энергии в контуре.

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

Полная энергия колебательного контура

; ;

где We — энергия электрического поля колебательного контура в данный момент времени, С — электроемкость конденсатора, u — значение напряжения на конденсаторе в данный момент времени, q — значение заряда конденсатора в данный момент времени, Wm — энергия магнитного поля колебательного контура в данный момент времени, L — индуктивность катушки, i —значение силы тока в катушке в данный момент времени.

Вынужденные колебания осциллятора при гармоническом воздействии. Дифференциальное уравнение вынужденных колебаний и его решение. Время установления колебаний. Явление резонанса. Связь параметров резонансных кривых с добротностью.

Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону:

При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила

Закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как

Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение

При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение

Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как

Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению

Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Отражение

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

Законы отражения. Формулы Френеля

Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. «угол падения равен углу отражения»

Читайте также:  Как прозванивать мультиметром dt 830b

Сдвиг Фёдорова — явление бокового смещения луча света при отражении. Отражённый луч не лежит в одной плоскости с падающим лучом.

В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла. Световые волны, падающие на диэлектрик вызывают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях.

16. Условия необходимые для получения интерференционной картины. Когерентность и монохроматичность световых волн. Время и длина когерентности. Радиус когерентности.

Интерференцию света можно объяснить, рассматривая интерференцию волн Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

монохроматические волны — не ограниченные в пространстве волны одной определенной и строго постоянной частоты. Так как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны.

Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга tког называется временем когерентности. Когерентность существует только в пределах одного цуга, и время когерентности не может превышать время излучения, т. е. tког 2 .

Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):

EП.

Складывая (4) и (5), с учетом соотношения , получим:

E = EK + EП = .

Итак, смещение x изменяется со временем по закону косинуса.

Следовательно, движение системы, находящейся под действием силы вида f = — kx, представляет собой гармоническое колебание.

График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:

Последнее изменение этой страницы: 2016-09-19; Нарушение авторского права страницы

Литература

Основная: Детлаф А.А., Яворский Б.М. Курс физики. — М.: Высшая школа, 1989. — Гл. 27, § 27.1 — 27.4.

Дополнительная: Савельев И.В. Курс общей физики. — М.: Наука, 1987. — Т.1. — гл. 7, § 49 — 61.

Контрольные вопросы для подготовки к занятию

1. Какое движение называется колебательным?

2. Какое колебательное движение называется периодическим?

3. Какие колебания называются свободными (или собственными)?

4. Какие колебания называются гармоническими и какими параметрами они характеризуются?

5. Запишите дифференциальное уравнение свободных гармонических колебаний и его решение в тригонометрическом виде.

6. По каким формулам определяется смещение, скорость, ускорение при механическом гармоническом колебании?

7. Каков физический смысл амплитуды, частоты, периода и фазы колебаний?

8. Как графически изображаются гармонические колебания?

9. Постройте векторную диаграмму при сложении гармонических колебаний одного направления и одинаковой частоты, напишите уравнение результирующего колебания.

10. Напишите выражения, определяющие амплитуду и фазу результирующего колебания.

11. Приведите формулу полной энергии материальной точки, совершающей гармонические колебания.

12. Запишите дифференциальное уравнение затухающего колебания и его решение в тригонометрическом виде.

13. Что такое декремент затухания, логарифмической декремент затухания, время релаксации, добротность?

14. Какие колебания называются вынужденными?

15. Приведите дифференциальное уравнение вынужденных колебаний и его решение в тригонометрическом виде. Поясните их.

16. Что такое резонанс? Чему равна при резонансе частота вынужденных колебаний? Амплитуда? Фаза?

Краткие теоретические сведения и основные формулы

Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени.

Колебания называютсясвободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему. Простейшим типом колебаний являются гармонические колебания – периодические изменения во времени физической величины, происходящие по закону синуса или косинуса:

, (23.1)

где f – значение некоторой колеблющейся величины (смещение х, сила переменного тока i и т. д.) в момент времени t; А – максимальное значение колеблющейся величины, называемой амплитудой колебаний; — круговая (циклическая) частота, ; — начальная фаза колебаний в момент времени t = 0, рад; — фаза колебаний в момент времени t.

Читайте также:  Модуль как обозначается в компьютере

Наименьший промежуток времени Т, через который повторяются значения всех физических величин, характеризующих периодическое колебание, называется периодом:

. (23.2)

,

где k – коэффициент упругости (жесткость) пружины; т – масса маятника;

,

где — приведенная длина физического маятника, J – момент инерции маятника относительно оси;

,

где l — длина маятника.

Число полных циклов колебаний, совершаемых за единицу времени, называется частотой колебаний:

. (23.3)

Единица частоты – герц (Гц); 1 Гц – частота периодического процесса, при котором за 1 с совершается один цикл колебаний.

. (23.4)

Скорость изменения периодической величины

. (23.5)

. (23.6)

Амплитуды скорости и ускорения соответственно:

; (23.7)

. (23.8)

Дифференциальное уравнение гармонических колебаний

. (23.9)

Корнями решения этого уравнения являются выражения (23.1).

Рассмотрим колебания пружинного маятника. Состояние равновесия будем рассматривать как исходное положение пружинного маятника, а все дальнейшие смещения его оценивать координатой х, отсчитываемой от положения равновесия рис.23.1. Предположим, что никакие внешние силы колебаниям маятника не предшествуют. В этом случае на маятник, смещенный из положения равновесия, действует восстанавливающая сила F = — k x. Согласно 2-му закону Ньютона

где — ускорение маятника.

Но F = — k x, следовательно или .

Обозначим , тогда дифференциальное уравнение гармонического колебания примет вид

, (23.10)

а смещение из положения равновесия выразится, например, уравнением

. (23.11)

Скорость и ускорение материальной точки выразятся уравнениями (23.12) и (23.13):

; (23.12)

. (23.13)

Кинетическая энергия материальной точки, совершающей гармонические колебания, равна

. (23.14)

Потенциальная энергия материальной точки, совершающей гармонические колебания под действием квазиупругой силы, равна

. (23.15)

Сложив и , получим формулу полной энергии:

.

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды или методом векторных диаграмм. Для этого из произвольной точки 0, выбранной на оси х, под углом , равным начальной фазе колебания, откладывается вектор , модуль которого равен амплитуде А рассматриваемого колебания (рис. 23.2). Если этот вектор привести во вращение с угловой скоростью , то проекция конца вектора будет перемещаться по оси х и принимать значения от —А до А, а колеблющаяся величина будет изменяться со временем по закону

.

Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания нужно сложить. Сложим гармонические колебания одного направления и одинаковой частоты:

;

,

воспользовавшись методом вращающегося вектора амплитуды. Построим векторные диаграммы этих колебаний (рис. 23.3).

Амплитуда и начальная фаза результирующего колебания задаются соотношениями

; (23.16)

. (23.17)

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях:

. (23.18)

Если начальные фазы и складываемых колебаний одинаковы, то уравнение (23.18) примет вид

. (23.19)

Это уравнение эллипса, оси которого совпадают с осями координат, а полуоси равны соответствующим амплитудам.

Если , то эллипс (23.19) вырождается в окружность.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системы. Свободные колебания реальных систем всегда затухают.

Дифференциальное уравнение свободных затухающих колебаний имеет вид

, (23.20)

где f – колеблющаяся величина, описывающая тот или иной физический процесс; b — коэффициент затухания; — циклическая частота свободных незатухающих колебаний той же колебательной системы.

Решение уравнения (23.20) в случае малых затуханий :

, (23.21)

где — амплитуда затухающих колебаний, а — начальная амплитуда.

Для пружинного маятника массой т, совершающего малые колебания под действием упругой силы F = — k x, коэффициент затухания

,

где r – коэффициент сопротивления.

Промежуток времени , в течение которого амплитуда затухающих колебаний уменьшится в е = 2,71 раз, называется временем релаксации.

Период затухающих колебаний

. (23.22)

Если и — амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение

называется декрементом затухания, а его логарифм

Ссылка на основную публикацию
Удалить одноклассники страницу с телефона айфон
Если вы хотите удалить свою страницу (профиль) в Одноклассниках, особенно если это требуется сделать со смартфона Android или iPhone —...
Тест автомобильных компрессоров за рулем
Жужжат много, а толку мало. Среди 12 образцов доступных (не дороже 2000 рублей) автомобильных компрессоров треть оказалась «неправильной». Стоит ли...
Тест железа в играх
Как найти игры для моего компьютера? На данной странице сервис выдаст полный список игр которые подходят вам исходя из параметров...
Удалить папку не удалось найти этот элемент
В этой инструкции подробно о том, как удалить файл или папку, если при попытке это сделать в Windows 10, 8...
Adblock detector