Укажите диапазон значений целых чисел без знака

Укажите диапазон значений целых чисел без знака

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
0 . 2 8 -1 0 . 255
0 . 2 16 -1 0 . 65535

Примеры:

а) число 7210 = 10010002 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:

Целые числа со знаком

Обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа.

Диапазоны значений целых чисел со знаком

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
-2 7 . 2 7 -1 -128 . 127
-2 15 . 2 15 -1 -32768 . 32767
-2 31 . 2 31 -1 -2147483648 . 2147483647

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины — семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например:

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:

2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:

3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

Как компьютер выполняет арифметические действия над целыми числами?

Сложение и вычитание

В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение обратных или дополнительных кодов уменьшаемого и вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.

Сложение обратных кодов. Здесь при сложении чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:


Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:


Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = -710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

4. А и В отрицательные. Например:

Полученный первоначально неправильный результат (обратный код числа -1110 вместо обратного кода числа -1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы. При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = -1010.

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

Читайте также:  Как подключить коробочку к телевизору

5. А и В положительные, сумма А+В больше, либо равна 2 n-1 , где n — количество разрядов формата чисел (для однобайтового формата n=8, 2 n-1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (16210 = 101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2 n-1 . Например:

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Сложение дополнительных кодов. Здесь также имеют место рассмотренные выше шесть случаев:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = -710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:


Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:


Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

  • на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов — образования обратного кода и прибавления единицы к его младшему разряду;
  • время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 1100112 на 1011012.

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.

Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

Формат числа в байтах

Запись с порядком

а) число 7210= 10010002воднобайтовомформате:

б) это же число в двубайтовомформате:

в) число 65535 в двубайтовомформате:

Целые числа со знакомобычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа. Знак “плюс” кодируется нулем, а “минус” — единицей.

Диапазоны значений целых чисел со знаком

Формат числа в байтах

Запись с порядком

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямойкод,обратныйкод,дополнительныйкод.

Читайте также:  Автоматический запуск макроса в excel

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например:

Отрицательные числав прямом, обратном и дополнительном кодах имеют разное изображение.

1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:

2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:

3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:

Обычно отрицательныедесятичные числа при вводе в машинуавтоматическипреобразуются вобратныйилидополнительныйдвоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходитобратное преобразованиев отрицательные десятичные числа.

Сложение и вычитание

В большинстве компьютеров операция вычитания не используется. Вместо нее производитсясложениеуменьшаемого собратнымилидополнительнымкодом вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные.При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А.Например:

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А.Например:

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицыиз знакового разряда в младший разряд суммы.

4. А и В отрицательные.Например:

Полученный первоначально неправильный результат (обратный код числа –1110вместо обратного кода числа –1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –1010.

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2 n–1 , где n – количество разрядов формата чисел (для однобайтового формата n=8, 2 n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточнодля размещения восьмиразрядной суммы (16210= 101000102), поэтомустарший разряд суммы оказывается в знаковом разряде.Это вызываетнесовпадение знака суммы и знаков слагаемых, чтоявляется свидетельством переполнения разрядной сетки.

6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2 n–1 .Например:

Здесь знак суммытожене совпадает со знаками слагаемых, что свидетельствует опереполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодовчисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

Читайте также:  Настройка резервного контроллера домена

2. А положительное, B отрицательное и по абсолютной величине больше, чем А.Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А.Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные.Например:

Получен правильный результат в дополнительном коде. Единицу переносаиз знакового разряда компьютеротбрасывает.

Случаи переполнениядля дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код,так как последнее состоит из двух шагов — образования обратного кода и прибавления единицы к его младшему разряду;

время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов,потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака обычно занимают в памяти один или два байта и принимают в однобайтовом формате значения от 00000000 2 до 11111111 2 , а в двубайтовом формате — от 00000000 00000000 2 до 11111111 11111111 2 .

Диапазоны значений целых чисел без знака

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
1 0 . 2 8 -1 0 . 255
2 0 . 2 16 -1 0 . 65535

а) число 72 10 = 1001000 2 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:

Целые числа со знаком обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа. Знак "плюс" кодируется нулем, а "минус" — единицей.

Диапазоны значений целых чисел со знаком

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
1 -2 7 . 2 7 -1 -128 . 127
2 -2 15 . 2 15 -1 -32768 . 32767
4 -2 31 . 2 31 -1 -2147483648 . 2147483647

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата , при котором для знака отводится один разряд, а для цифр абсолютной величины — семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде .Например:

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

    Прямой код . В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:

Обратный код . Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями.Например:

Дополнительный код . Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

Ссылка на основную публикацию
Удалить одноклассники страницу с телефона айфон
Если вы хотите удалить свою страницу (профиль) в Одноклассниках, особенно если это требуется сделать со смартфона Android или iPhone —...
Тест автомобильных компрессоров за рулем
Жужжат много, а толку мало. Среди 12 образцов доступных (не дороже 2000 рублей) автомобильных компрессоров треть оказалась «неправильной». Стоит ли...
Тест железа в играх
Как найти игры для моего компьютера? На данной странице сервис выдаст полный список игр которые подходят вам исходя из параметров...
Удалить папку не удалось найти этот элемент
В этой инструкции подробно о том, как удалить файл или папку, если при попытке это сделать в Windows 10, 8...
Adblock detector