Модуль напряженности электрического поля в конденсаторе

Модуль напряженности электрического поля в конденсаторе

Модуль напряжённости электрического поля в плоском воздушном конденсаторе ёмкостью 50 мкФ равен 200 В/м. Расстояние между пластинами конденсатора 2 мм. Чему равен заряд этого конденсатора? Ответ выразите в микрокулонах.

Напряженность поля в конденсаторе может быть вычислена по формуле:

Заряд на обкладках конденсатора связан с емкостью и напряжением:

Для того, чтобы найти силу, которая действует между двумя электрическими зарядами, надо знать значение каждого из них и расстояние между зарядами. Если таких зарядов два, задача легко решается при помощи закона Кулона. А как быть, когда электрических зарядов много? Для таких случаев физики ввели понятия электрического поля.

При помощи электрического поля можно описать, как множество зарядов будет воздействовать на некий пробный заряд, который может быть помещен в любую точку электрического поля. Для этого достаточно умножить величину пробного заряда на величину напряженности поля в той точке, где находится пробный заряд.

  • E — напряженность электрического поля;
  • F — сила, которая действует на пробный заряд со стороны множества зарядов;
  • q — величина пробного заряда.

Напряженность электрического поля является векторной величиной, имеет свой модуль и направление. Если заряд в точке положительный — направление силы совпадает с направлением напряженности поля в этой точке; если заряд отрицательный — сила направлена в противоположную сторону.

Напряженность электрического поля в любой точке является результирующим вектором, и вычисляется путем сложения составляющих векторов электрических полей.

Электрическое поле точечного заряда

Под точечным зарядом понимается заряд очень малого физического объекта.

Точечный заряд Q создает некое электрическое поле. При этом, с помощью пробного заряда q можно измерить в разных точках силу, которую вызывает заряд Q:

Напряженность электрического поля точечного заряда является векторной величиной, она направлена по прямой, соединяющей центры двух зарядов, при этом линии поля выходят из положительных зарядов и сходятся у отрицательных зарядов. Данная модель была впервые предложена в 19 веке Майклом Фарадеем.

Надо понимать, что линии электрического поля не могут начинаться и заканчиваться в некой точке пространства, где нет электрического заряда.

Для того, чтобы определить величину электрического поля от нескольких зарядов в конкретной точке поля, необходимо сложить векторы напряженности полей в этой точке.

Электрическое поле плоского конденсатора

Следует признать, что задача вычисления электрического поля от множественных точечных зарядов, достаточно сложна. Физики, как народ достаточно "ленивый", решили для упрощения задачи использовать модели простых электрических полей, например, плоский конденсатор.

В электрическом конденсаторе положительные и отрицательные заряды хранятся отдельно — каждый на своей пластине, при этом они притягиваются, но не соединяются, т.к. пластины конденсатора разделены диэлектриком.

Читайте также:  Капельная зарядка аккумулятора андроид

Допустим, дальняя пластина конденсатора на верхнем рисунке заряжена положительно (на пластине равномерно распределены точечные заряды +q), а нижняя — отрицательно (на пластине равномерно распределены точечные заряды -q). При этом все компоненты напряженностей электрических полей, которые создаются точечными зарядами, взаимно компенсируют друг друга, за исключением компонент, направленных перпендикулярно пластинам конденсатора. Таким образом, между двумя пластинами плоского конденсатора, расположенными параллельно друг другу, создается постоянное электрическое поле, напряженность которого можно вычислить по формуле:

  • ε≈8,85·10 -12 Кл 2 Н -1 м -2 — электрическая постоянная.
  • q — общий заряд для каждой из пластин.
  • А — площадь каждой пластины.

Отношение q/A называется плотностью заряда σ (характеризует заряд, который приходится на единицу площади). В таком случае, напряженность поля будет равна:

Такая модель плоского конденсатора значительно упрощает задачу поиска напряженности электрического поля, поскольку она постоянна и имеет постоянное направление (с положительной пластины на отрицательную), поэтому, напряженность электрического поля будет одинаковой в любом месте между пластинами конденсатора.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q — физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл — элементарный или минимально возможный заряд (заряд электрона), N — число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

Точечный электрический заряд — заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

где — электрическая постоянная.

где 12 — сила, действующая со стороны второго заряда на первый, а 21 — со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля — материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Читайте также:  Шифр rc4 как включить в опере

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке — это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью :

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал — отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d — расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2 составляет:

Величина называется разностью потенциалов или напряжением.

Читайте также:  Необходимо еще раз обсчитать все данные

Напряжение или разность потенциалов между двумя точками — это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников — отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды , и обратно пропорциональна расстоянию между пластинами d:

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd — объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Так как электрон увеличил свою скорость, то ускорение и сила Кулона сонаправлены со скоростью. Значит, электрон движется против силовых линий поля. Изменение кинетической энергии электрона равно работе поля :

Ответ: разность потенциалов равна — 22,7 В.

Ссылка на основную публикацию
Метод зейделя в excel
Задание. Решить СЛАУ методами Якоби и Гаусса-Зейделя с заданной точностью . Проанализировать результаты решения в зависимости от =0,1; 0,01; 0,001....
Лучшие драйвера nvidia для майнинга
Для пользователя, лишь поверхностно знакомого с майнингом криптовалют, все выглядит банально: установил соответствующее программное обеспечение — и свободен, пока GPU...
Макрос на быстрый клик
Макрос кликер. Что он делает и зачем он нужен? В игре Dota 2, как вы скорее всего знаете, есть встроенный...
Много процессов chrome exe в диспетчере задач
Многие пользователи замечают, что Chrome грузит процессор, что выражается в большом проценте нагрузки CPU (ЦП), иногда на все 100 процентов,...
Adblock detector