Функция x целая часть x word

Функция x целая часть x word

Целой частью действительного числа x (x∈R) называется наибольшее целое число, не превосходящее x.

Целую часть числа x обозначают символом [x].

[x] читают «антье от x».

Обозначение [x] в 1808 году ввёл К. Гаусс.

В частности, если n — целое число (n∈Z), то [n]=n.

Вычислить целую часть числа:

7,8; 0,12; -0,7; -4,92; 15 2/3; 5/7; -3/11; 8; -50.

Фактически вычисление целой части числа x представляет собой округление до ближайшего к числу x целого числа в меньшую сторону (то есть округление с недостатком).

Функцию, ставящую в соответствие каждому значению x его целую часть — число [x], называют целой частью числа x и обозначают y=[x] .

Функция целая часть числа определена для любого действительного x (x∈R).

Область значений функции y=[x] — множество целых чисел (y∈Z).

По определению целой части числа

18,4

Таким образом, x∈[-9;-6) и

На промежутке [-9;-6) [x] принимает три значения.

Подставив в равенство (*) [x]= -9, найдём x:

Так как -9∈[-9;-8), то x= -9 — корень уравнения.

2. При x∈[-8;-7) [x]= -8, откуда

-7,5∈[-8;-7), поэтому x= -7,5 — корень уравнения.

3. При x∈[-7;-6) [x]= -7, и

-6∉[-7;-6), значит x= -6 не является корнем уравнения.

Функция [x] равна наибольшему целому числу, превосходящемуx (x – любое действительное число). Например:

Функция [x] имеет «точки разрыва»: при целых значениях x она «изменяется скачком».

На рис.2 дан график этой функции, причем левый конец каждого из горизонтальных отрезков принадлежит графику (жирные точки), а правый – не принадлежит.

Попробуйте доказать, что если каноническое разложение числа n! есть , то

Аналогичные формулы имеют место для

Зная это, легко определить, например, сколькими нулями оканчивается число 100! Действительно, пусть . Тогда

и .

Следовательно, 100! Делится на , т.е. оканчивается двадцатью четырьмя нулями.

Фигуры из кусочков квадрата

К числу полезных и увлекательных развлечений относится составление фигур из семи кусочков квадрата, разрезанного в соответствии с рис.3, (а), причем при составлении заданных фигур должны быть использованы все семь кусочков, и они должны налегать, даже частично, друг на друга.

Читайте также:  Программа для формата lay

На рис. 4 приведены симметричные фигуры 1 . Попробуйте сложить эти фигуры из частей квадрата, изображенного на рис. 3, (а).

Из этих же чертежей можно складывать и многие другие фигуры (например, изображения различных предметов, животных и т.п.).

Менее распространенным вариантом игры является составление фигур из кусочков квадрата, изображенного на рис. 3, (b).

Магические квадраты

Магические квадрат «n 2 -квадратом» назовем квадрат, разделенный на n 2 клеток, заполненных первыми n 2 натуральными числами так, что суммы чисел, стоящих в любом горизонтальном или вертикальном ряду, а также на любой из диагоналей квадрата, равны одному и тому же числу

Если одинаковы лишь суммы чисел, стоящих в любом горизонтальном и вертикальном ряду, то квадрат называется полумагическим.

Магический 4 2 –квадрат назван именем Дюрера, математика и художника XVIвека, изображавшего квадрат на известной картине «Меланхолия».

Кстати, два нижних средних числа этого квадрата образуют число 1514-дату создания картины.

Существует лишь восемь девятиклеточных магических квадратов. Два из них, являющиеся зеркальным изображением друг друга, приведены на рисунке; остальные шесть могут быть получены из этих квадратов вращение их вокруг центра на 90°, 180°, 270°

2. Нетрудно полностью исследовать вопрос о магических квадратов при n=3

Действительно,S3 = 15 , и существует лишь восемь способов представления числа 15 в виде суммы различных чисел (от единицы до девяти):

Заметим, что каждое из чисел 1, 3, 7, 9 входит в две, а каждое из чисел 2, 4, 6, 8 – в три указанные суммы и лишь число 5 входит в четыре суммы. С другой стороны, из восьми трехклеточных рядов: трех горизонтальных, трех вертикальных и двух диагональных – через каждую из угловых клеток квадрата проходит по три, через центральную клетку по четыре и через каждую из остальных клеток по два ряда. Следовательно, число 5 должно обязательно стоять в центральной клетке, числа 2, 4, 6, 8 – в угловых клетках, а числа 1, 3, 7, 9 – в остальных клетках квадрата.

Читайте также:  Как удалить повторяющиеся контакты в андроид телефоне

Скачать через: 20 сек.

Установите безопасный браузер

Предпросмотр документа

Волгоград. 2003 год

Доморяд Александр Петрович

Математические игры и развлечения

Редактор Копылова А.Н.

Техн. редактор Мурашова Н.Я.

Корректор Сечейко Л.О.

Сдано в набор 26.09.2003. Подписано к печати 14.12.2003. Формат 84×108¼. Физ. печ. л. 8,375. Условн.

печ. л. 13,74. Уч.-изд.л. 12,82. Тираж 200 000 экз. Заказ №979. Цена книги 50 руб.

Математические игры и развлечения: Избранное. – Волгоград: ВГПУ, 2003. – 20 с.В книге представлены избранные задачи из монографии Доморяда А.П. «Математические игры и развлечения», которая была издана в 1961 году Государственным издательством физико-математической литературы г. Москвы.

ISBN05-09-001292-X ББК 22.1я2я72

©Издательство «ВГУП» 2003

Из разнообразного материала, объединяемого различными авторами под общим названием математических игр и развлечений, можно выделить несколько групп "классических развлечений", издавна привлекавших внимание математиков:

Развлечения, связанные с поисками оригинальных решений задач, допускающих практически неисчерпаемое множество решений; обычно интересуются установлением числа решений, разработкой методов, дающих большие группы решений или решения, удовлетворяющие каким-нибудь специальным требованиям.

Математические игры, т.е. игры, в которых двое играющих рядом "ходов", делаемых поочередно в соответствии с указанными правилами, стремятся к определенной цели, причем оказывается возможным для любого исходного положения предопределить победителя и указать, как — при любых ходах противника — он может добиться победы.

"Игры одного лица", т.е. развлечения, в которых с помощью ряда операций, выполняемых одним игроком в соответствии с данными правилами, надо достигнуть определенной, заранее указанной цели; здесь интересуются условиями, при которых цель может быть достигнута, и ищут наименьшее число ходов, необходимых для ее достижения.

Классическим играм и развлечениям посвящена большая часть этой книги.

Каждый может попытаться, проявив настойчивость и изобретательность, получить интересные (свои!) результаты.

Читайте также:  Fotostrana ru user 45215811

Если такие классические развлечения, как, например, составление "магических квадратов" могут оказаться по душе сравнительно узкому кругу лиц, то составление, например, симметричных фигур из деталей разрезанного квадрата поиски числовых курьезов и т.п., не требуя никакой математической подготовки, могут доставить удовольствие и любителям , и "не любителям" математики. То же можно сказать и о развлечениях, требующих подготовки в объеме 9-11 классов средней школы.

Многие развлечения и даже отдельные задачи могут подсказать любителям математики темы для самостоятельного исследования.

В целом книга рассчитана на читателей с математической подготовкой в объеме 10-11 классов, хотя большая часть материала доступна девятиклассникам, а некоторые вопросы — даже учащимся 5-8классов.

Многие параграфы могут быть использованы преподавателями математики для организации внеклассной работы.

Разные категории читателей могут по-разному использовать эту книгу: лица, не увлекающиеся математической могут познакомиться с любопытными свойствами чисел, фигур и т.п., не вникая в обоснование игр и развлечений, принимая на веру отдельные утверждения; любителям математики советуем изучать отдельные места книги с карандашом и бумагой, решая предлагаемые задачи и отвечая на отдельные вопросы, предложенные для размышления.

Определение задуманного числа по трем таблица

Разместив в каждой из трех таблиц подряд числа от 1 до 60 так, чтобы в первой таблице они стояли в трех столбцах по двадцати чисел в каждом, во второй – в четырех столбцах по 15 чисел в каждом и в третьей – в пяти столбцах по 12 чисел в каждом ( см. рис. 1), легко быстро определить задуманное кем-нибудть число N (N≤60) если будут указаны номера ,, столбцов, содержащих задуманное число в 1-й, во 2-й и 2-й таблицах: Nбудет равно остатку от деления числа 40+45+36 на 60 или, другими словами, Nбудет равно меньшему положительному числу, сравнимому с суммой(40+45+36) по модулю 60. Например, при =3, =2, =1:

Ссылка на основную публикацию
Файловый менеджер для ubuntu server
Работа с файлами в операционной системе Ubuntu осуществляется через соответствующий менеджер. Все дистрибутивы, разработанные на ядре Linux, позволяют юзеру всячески...
Удалить одноклассники страницу с телефона айфон
Если вы хотите удалить свою страницу (профиль) в Одноклассниках, особенно если это требуется сделать со смартфона Android или iPhone —...
Удалить папку не удалось найти этот элемент
В этой инструкции подробно о том, как удалить файл или папку, если при попытке это сделать в Windows 10, 8...
Файлы dll чем открыть
Файлы формата DLL открываются специальными программами. Существует 2 типа форматов DLL, каждый из которых открывается разными программами. Чтобы открыть нужный...
Adblock detector