Формула модуля перемещения в физике

Формула модуля перемещения в физике

Скорость (v) — физическая величина, численно равна пути (s), пройденного телом за единицу времени (t).

Путь (S) — длина траектории, по которой двигалось тело, численно равен произведению скорости (v) тела на время (t) движения.

Время движения (t) равно отношению пути (S), пройденного телом, к скорости (v) движения.

Средняя скорость (vср) равна отношению суммы участков пути (s1 s2, s3, . ), пройденного телом, к промежутку времени (t1+ t2+ t3+ . ), за который этот путь пройден.

Средняя скорость — это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден.

Средняя скорость при неравномерном движении по прямой: это отношение всего пути ко всему времени.

Два последовательных этапа с разными скоростями: где

При решении задач — сколько этапов движения столько будет составляющих:

Проекция вектора перемещения на ось ОХ:

Проекция вектора перемещения на ось OY:

Проекция вектора на ось равна нулю, если вектор перпендикулярен оси.

Знаки проекций перемещения: проекцию считают положительной, если движение от проекции начала вектора к проекции конца происходит по направлению оси, и отрицательной, если против оси. В данном примере

Модуль перемещения — это длина вектора перемещения:

По теореме Пифагора:

Проекции перемещения и угол наклона

В данном примере:

Уравнение координаты (в общем виде):

Радиус-вектор — вектор, начало которого совпадает с началом координат, а конец — с положением тела в данный момент времени. Проекции радиус-вектора на оси координат определяют координаты тела в данный момент времени.

Радиус-вектор позволяет задать положение материальной точки в заданной системе отсчета:

Равномерное прямолинейное движение — движение, при котором тело за любые равные промежутки времени, совершает равные перемещения.

Скорость при равномерном прямолинейном движении. Скорость — векторная физическая величина, которая показывает, какое перемещение совершает тело за единицу времени.

В векторном виде:

В проекциях на ось ОХ:

Дополнительные единицы измерения скорости:

1 км/ч = 1000 м/3600 с,

Измерительный прибор — спидометр — показывает модуль скорости.

Знак проекции скорости зависит от направления вектора скорости и оси координат:

График проекции скорости представляет собой зависиость проекции скорости от времени:

График скорости при равномерном прямолинейном движении — прямая, параллельная оси времени (1, 2, 3).

Если график лежит над осью времени (.1), то тело движется по направлению оси ОХ. Если график расположен под осью времени, то тело движется против оси ОХ (2, 3).

Чем дальше график от оси времени, тем больше модуль скорости (3).

Геометрический смысл перемещения.

При равномерном прямолинейном движении перемещение определяют по формуле . Такой же результат получим, если вычислим площадь фигуры под графиком скорости в осях . Значит, для определения пути и модуля перемещения при прямолинейном движении необходимо вычислять площадь фигуры под графиком скорости в осях :

График проекции перемещения — зависимость проекции перемещения от времени.

График проекции перемещения при равномерном прямолинейном движении — прямая, выходящая из начала координат (1, 2, 3).

Если прямая (1) лежит над осью времени, то тело движется по направлению оси ОХ, а если под осью (2, 3), то против оси ОХ.

Читайте также:  Как припаять джек к наушникам

Чем больше тангенс утла наклона (1) графика, тем больше модуль скорости.

График координаты — зависимость координаты тела от времени:

График координаты при равномерном прямолинейном движении — прямые (1, 2, 3).

Если с течением времени координата увеличивается (1, 2), то тело движется по направлению оси ОХ; если координата уменьшается (3), то тело движется против направления оси ОХ.

Чем больше тангенс угла наклона (1), тем больше модуль скорости.

Если графики координат двух тел пересекаются, то из точки пересечения следует опустить перпендикуляры на ось времени и ось координат.

Под относительностью мы понимаем зависимость чего-либо от выбора системы отсчета. Например, покой относителен; движение относительно и положение тела относительно.

Правило сложения перемещений. Векторная сумма перемещений

где — перемещение тела относительно подвижной системы отсчета (ПСО); — перемещение ПСО относительно неподвижной системы отсчета (НСО); — перемещение тела относительно неподвижной системы отсчета (НСО).

Векторное сложение:

Сложение векторов, направленных вдоль одной прямой:

Сложение векторов, перпендикулярных друг другу

По теореме Пифагора

Сложение векторов, расположенных под углом друг к другу

Правило сложения скоростей. Векторная сумма скоростей:

где — скорость тела относительно подвижной системы отсчета (ПСО); — скорость ПСО относительно неподвижной системы отсчета (НСО); — скорость тела относительно неподвижной системы отсчета (НСО).

Относительная скорость. Векторная разность скоростей:

где — скорость первого тела относительно второго (относительная скорость); — скорость первого тела; — скорость второго тела.

Вычитание векторов, направленных по одной прямой:

Вычитание векторов перпендикулярных друг другу

Вычитание векторов, расположенных под углом друг к другу:

Перемеще́ние (в кинематике) — изменение положения физического тела в пространстве с течением времени относительно выбранной системы отсчёта.

Применительно к движению материальной точки перемещением называют вектор, характеризующий это изменение [1] . Обладает свойством аддитивности. Обычно обозначается символом S → <displaystyle <vec >> — от итал. spostamento (перемещение).

Модуль вектора S → <displaystyle <vec >> — это модуль перемещения, в Международной системе единиц (СИ) измеряется в метрах; в системе СГС — в сантиметрах.

Можно определить перемещение, как изменение радиус-вектора точки: Δ r → <displaystyle Delta <vec >> .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Мгновенная скорость точки определяется как предел отношения перемещения к малому промежутку времени, за которое оно совершено. Более строго:

v → = lim Δ t → 0 Δ r → Δ t = d r → d t <displaystyle <vec >=lim limits _<Delta t o 0><frac <Delta <vec >><Delta t>>=<frac >>

>> .

Средняя скорость перемещения является векторной физической величиной, которую определяют по формуле

где Δ r → — вектор перемещения; ∆ t — интервал времени, за которое это перемещение произошло.

Средняя путевая скорость является скалярной физической величиной и вычисляется по формуле

v s = S общ t общ ,

где S общ = S 1 + S 1 + . + S n ; t общ = t 1 + t 2 + . + t N .

Здесь S 1 = v 1 t 1 — первый участок пути; v 1 — скорость прохождения первого участка пути (рис. 1.18); t 1 — время движения на первом участке пути и т.п.

Читайте также:  Магистральные дороги москвы дмитровское шоссе форум

Пример 7. Одну четверть пути автобус движется со скоростью 36 км/ч, вторую четверть пути — 54 км/ч, оставшийся путь — со скоростью 72 км/ч. Рассчитать среднюю путевую скорость автобуса.

Решение. Общий путь, пройденный автобусом, обозначим S :

S 1 = S /4 — путь, пройденный автобусом на первом участке,

S 2 = S /4 — путь, пройденный автобусом на втором участке,

S 3 = S /2 — путь, пройденный автобусом на третьем участке.

Время движения автобуса определяется формулами:

    на первом участке ( S 1 = S /4) —

t 1 = S 1 v 1 = S 4 v 1 ;

на втором участке ( S 2 = S /4) —

t 2 = S 2 v 2 = S 4 v 2 ;

на третьем участке ( S 3 = S /2) —

t 3 = S 3 v 3 = S 2 v 3 .

Общее время движения автобуса составляет:

t общ = t 1 + t 2 + t 3 = S 4 v 1 + S 4 v 2 + S 2 v 3 = S ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) .

Вычисление средней путевой скорости автобуса произведем по формуле

v s = S общ t общ = S S ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) =

= 1 ( 1 4 v 1 + 1 4 v 2 + 1 2 v 3 ) = 4 v 1 v 2 v 3 v 2 v 3 + v 1 v 3 + 2 v 1 v 2 .

Расчет дает значение средней путевой скорости:

v s = 4 ⋅ 36 ⋅ 54 ⋅ 72 54 ⋅ 72 + 36 ⋅ 72 + 2 ⋅ 36 ⋅ 54 = 54 км/ч.

Пример 8. Пятую часть времени городской автобус тратит на остановки, остальное время он движется со скоростью 36 км/ч. Определить среднюю путевую скорость автобуса.

Решение. Общее время движения автобуса на маршруте обозначим t :

t 1 = t /5 — время, затраченное на остановки,

t 2 = 4 t /5 — время движения автобуса.

Путь, пройденный автобусом:

    за время t 1 = t /5 —

S 1 = v 1 t 1 = 0,

так как скорость автобуса v 1 на данном временном интервале равна нулю ( v 1 = 0);

    за время t 2 = 4 t /5 —

S 2 = v 2 t 2 = v 2 4 t 5 = 4 5 v 2 t ,

где v 2 — скорость автобуса на данном временном интервале ( v 2 = = 36 км/ч).

Общий путь автобуса составляет:

S общ = S 1 + S 2 = 0 + 4 5 v 2 t = 4 5 v 2 t .

Вычисление средней путевой скорости автобуса произведем по формуле

v s = S общ t общ = 4 5 v 2 t t = 4 5 v 2 .

Расчет дает значение средней путевой скорости:

v s = 4 5 ⋅ 36 = 30 км/ч.

Пример 9. Уравнение движения материальной точки имеет вид x ( t ) = (9,0 − 6,0 t + 2,0 t 2 ) м, где координата задана в метрах, время — в секундах. Определить среднюю путевую скорость и величину средней скорости перемещения материальной точки за первые три секунды движения.

Решение. Для определения средней скорости перемещения необходимо рассчитать перемещение материальной точки. Модуль перемещения материальной точки в интервале времени от t 1 = 0 с до t 2 = 3,0 с вычислим как разность координат:

| Δ r → | = | x ( t 2 ) − x ( t 1 ) | ,

x ( t 1 ) = 9,0 − 6,0 t 1 + 2,0 t 1 2 = 9,0 − 6,0 ⋅ 0 + 2,0 ⋅ 0 2 = 9,0 м;

x ( t 2 ) = 9,0 − 6,0 t 2 + 2,0 t 2 2 = 9,0 − 6,0 ⋅ 3,0 + 2,0 ⋅ ( 3,0 ) 2 = 9,0 м.

Подстановка значений в формулу для вычисления модуля перемещения дает:

| Δ r → | = | x ( t 2 ) − x ( t 1 ) | = 9,0 − 9,0 = 0 м.

Таким образом, перемещение материальной точки равно нулю. Следовательно, модуль средней скорости перемещения также равен нулю:

| v → r | = | Δ r → | t 2 − t 1 = 0 3,0 − 0 = 0 м/с.

Для определения средней путевой скорости нужно рассчитать путь, пройденный материальной точкой за интервал времени от t 1 = 0 с до t 2 = 3,0 с. Движение точки является равнозамедленным, поэтому необходимо выяснить, попадает ли точка остановки в указанный интервал.

Для этого запишем закон изменения скорости материальной точки с течением времени в виде:

v x = v 0 x + a x t = − 6,0 + 4,0 t ,

где v 0 x = −6,0 м/с — проекция начальной скорости на ось Ox ; a x = = 4,0 м/с 2 — проекция ускорения на указанную ось.

Найдем точку остановки из условия

τ ост = v 0 a = 6,0 4,0 = 1,5 с.

Точка остановки попадает во временной интервал от t 1 = 0 с до t 2 = 3,0 с. Таким образом, пройденный путь вычислим по формуле

Читайте также:  Как правильно войти в одноклассники

где S 1 = | x ( τ ост ) − x ( t 1 ) | — путь, пройденный материальной точкой до остановки, т.е. за время от t 1 = 0 с до τ ост = 1,5 с; S 2 = | x ( t 2 ) − x ( τ ост ) | — путь, пройденный материальной точкой после остановки, т.е. за время от τ ост = 1,5 с до t 1 = 3,0 с.

Рассчитаем значения координат в указанные моменты времени:

x ( t 1 ) = 9,0 − 6,0 t 1 + 2,0 t 1 2 = 9,0 − 6,0 ⋅ 0 + 2,0 ⋅ 0 2 = 9,0 м;

x ( τ ост ) = 9,0 − 6,0 τ ост + 2,0 τ ост 2 = 9,0 − 6,0 ⋅ 1,5 + 2,0 ⋅ ( 1,5 ) 2 = 4,5 м;

x ( t 2 ) = 9,0 − 6,0 t 2 + 2,0 t 2 2 = 9,0 − 6,0 ⋅ 3,0 + 2,0 ⋅ ( 3,0 ) 2 = 9,0 м.

Значения координат позволяют вычислить пути S 1 и S 2 :

S 1 = | x ( τ ост ) − x ( t 1 ) | = | 4,5 − 9,0 | = 4,5 м;

S 2 = | x ( t 2 ) − x ( τ ост ) | = | 9,0 − 4,5 | = 4,5 м,

а также суммарный пройденный путь:

S = S 1 + S 2 = 4,5 + 4,5 = 9,0 м.

Следовательно, искомое значение средней путевой скорости материальной точки равно

v s = S t 2 − t 1 = 9,0 3,0 − 0 = 3,0 м/с.

Пример 10. График зависимости проекции скорости материальной точки от времени представляет собой прямую линию и проходит через точки (0; 8,0) и (12; 0), где скорость задана в метрах в секунду, время — в секундах. Во сколько раз средняя путевая скорость за 16 с движения превышает величину средней скорости перемещения за то же время?

Решение. График зависимости проекции скорости тела от времени показан на рисунке.

Для графического вычисления пути, пройденного материальной точкой, и модуля ее перемещения необходимо определить значение проекции скорости в момент времени, равный 16 с.

Существует два способа определения значения v x в указанный момент времени: аналитический (через уравнение прямой) и графический (через подобие треугольников). Для нахождения v x воспользуемся первым способом и составим уравнение прямой по двум точкам:

t − t 1 t 2 − t 1 = v x − v x 1 v x 2 − v x 1 ,

где ( t 1 ; v x 1 ) — координаты первой точки; ( t 2 ; v x 2 ) — координаты второй точки. По условию задачи: t 1 = 0, v x 1 = 8,0, t 2 = 12, v x 2 = 0. С учетом конкретных значений координат данное уравнение принимает вид:

t − 0 12 − 0 = v x − 8,0 0 − 8,0 ,

При t = 16 с значение проекции скорости составляет

Данное значение можно получить также из подобия треугольников.

    Вычислим путь, пройденный материальной точкой, как сумму величин S 1 и S 2 :

где S 1 = 1 2 ⋅ 8,0 ⋅ 12 = 48 м — путь, пройденный материальной точкой за интервал времени от 0 с до 12 с; S 2 = 1 2 ⋅ ( 16 − 12 ) ⋅ | v x | = 1 2 ⋅ 4,0 ⋅ 8 3 = = 16 3 м — путь, пройденный материальной точкой за интервал времени от 12 с до 16 с.

Суммарный пройденный путь составляет

S = S 1 + S 2 = 48 + 16 3 = 160 3 м.

Средняя путевая скорость материальной точки равна

v s = S t 2 − t 1 = 160 3 ⋅ 16 = 10 3 м/с.

    Вычислим значение перемещения материальной точки как модуль разности величин S 1 и S 2 :

S = | S 1 − S 2 | = | 48 − 16 3 | = 128 3 м.

Величина средней скорости перемещения составляет

| v → r | = | Δ r → | t 2 − t 1 = 128 3 ⋅ 16 = 8 3 м/с.

Искомое отношение скоростей равно

v s | v → r | = 10 3 ⋅ 3 8 = 10 8 = 1,25 .

Средняя путевая скорость материальной точки в 1,25 раза превышает модуль средней скорости перемещения.

Ссылка на основную публикацию
Файловый менеджер для ubuntu server
Работа с файлами в операционной системе Ubuntu осуществляется через соответствующий менеджер. Все дистрибутивы, разработанные на ядре Linux, позволяют юзеру всячески...
Удалить одноклассники страницу с телефона айфон
Если вы хотите удалить свою страницу (профиль) в Одноклассниках, особенно если это требуется сделать со смартфона Android или iPhone —...
Удалить папку не удалось найти этот элемент
В этой инструкции подробно о том, как удалить файл или папку, если при попытке это сделать в Windows 10, 8...
Файлы dll чем открыть
Файлы формата DLL открываются специальными программами. Существует 2 типа форматов DLL, каждый из которых открывается разными программами. Чтобы открыть нужный...
Adblock detector