Что влияет на производительность процессора

Что влияет на производительность процессора

Кэш-память играет важную роль. Без нее от высокой тактовой частоты процессора не было бы никакого проку. Кэш позволяет использовать в компьютере любую, даже самую "медленную" оперативную память, без ощутимого ущерба для его производительности.

О том, что такое кэш-память процессора, как она работает и какое влияние оказывает на быстродействие компьютера, читатель узнает из этой статьи.

Содержание статьи

Что такое кэш-память процессора

Решая любую задачу, процессор компьютера получает из оперативной памяти необходимые блоки информации. Обработав их, он записывает в память результаты вычислений и получает для обработки следующие блоки. Это продолжается, пока задача не будет выполнена.

Все упомянутые операции производятся на очень высокой скорости. Однако, даже самая быстрая оперативная память работает медленнее любого "неторопливого" процессора. Каждое считывание из нее информации и обратная ее запись отнимают много времени. В среднем, скорость работы оперативной памяти в 16 – 17 раз ниже скорости процессора.

Не смотря на такой дисбаланс, процессор не простаивает и не ожидает каждый раз, когда оперативная память "выдает" или "принимает" данные. Он почти всегда работает на максимальной скорости. И все благодаря наличию у него кэш-памяти.

Кэш-память процессора – это небольшая, но очень быстрая память. Она встроена в процессор и является своеобразным буфером, сглаживающим перебои в обмене данными с более медленной оперативной памятью. Кэш-память часто называют сверхоперативной памятью.

Кэш нужен не только для выравнивания дисбаланса скорости. Процессор обрабатывает данные более мелкими порциями, чем те, в которых они хранятся в оперативной памяти. Поэтому кэш-память играет еще и роль своеобразного места для "перепаковки" и временного хранения информации перед ее передачей процессору, а также возвращением результатов обработки в оперативную память.

Устройство кэш-памяти процессора

Система кэш-памяти процессора состоит из двух блоков — контроллера кэш-памяти и собственно самой кэш-памяти.

Контроллер кэш памяти

Контроллер кэш памяти – это устройство, управляющее содержанием кэша, получением необходимой информации из оперативной памяти, передачей ее процессору, а также возвращением в оперативную память результатов вычислений.

Когда ядро процессора обращается к контроллеру за какими-то данными, тот проверяет, есть ли эти данные в кэш-памяти. Если это так, ядру моментально отдается информация из кэша (происходит так называемое кэш-попадание).

В противном случае ядру приходится ожидать поступления данных из медленной оперативной памяти. Ситуация, когда в кэше не оказывается нужных данных, называется кэш-промахом.

Задача контроллера – сделать так, чтобы кэш-промахи происходили как можно реже, а в идеале – чтобы их не было вообще.

Размер кэша процессора по сравнению с размером оперативной памяти несоизмеримо мал. В нем может находиться лишь копия крошечной части данных, хранимых в оперативной памяти. Но, не смотря на это, контроллер допускает кэш-промахи не часто. Эффективность его работы определяется несколькими факторами:

• размером и структурой кэш-памяти (чем больше ресурсов имеет в своем распоряжении контроллер, тем ниже вероятность кэш-промаха);

• эффективностью алгоритмов, по которым контроллер определяет, какая именно информация понадобится процессору в следующий момент времени;

• сложностью и количеством задач, одновременно решаемых процессором. Чем сложнее задачи и чем их больше, тем чаще "ошибается" контроллер.

Кэш-память процессора

Кэш-память процессора изготавливают в виде микросхем статической памяти (англ. Static Random Access Memory, сокращенно — SRAM). По сравнению с другими типами памяти, статическая память обладает очень высокой скоростью работы.

Однако, эта скорость зависит также от объема конкретной микросхемы. Чем значительней объем микросхемы, тем сложнее обеспечить высокую скорость ее работы.

Учитывая указанную особенность, кэш-память процессора изготовляют в виде нескольких небольших блоков, называемых уровнями. В большинстве процессоров используется трехуровневая система кэша:

Кэш-память первого уровня или L1 (от англ. Level — уровень) – очень маленькая, но самая быстрая и наиболее важная микросхема памяти. Ни в одном процессоре ее объем не превышает нескольких десятков килобайт. Работает она без каких-либо задержек. В ней содержатся данные, которые чаще всего используются процессором.

Количество микросхем памяти L1 в процессоре, как правило, равно количеству его ядер. Каждое ядро имеет доступ только к своей микросхеме L1.

Кэш-память второго уровня (L2) немного медленнее кэш-памяти L1, но и объем ее более существенный (несколько сотен килобайт). Служит она для временного хранения важной информации, вероятность запроса которой ниже, чем у информации, находящейся в L1.

Кэш-память третьего уровня (L3) – еще более объемная, но и более медленная схема памяти. Тем не менее, она значительно быстрее оперативной памяти. Ее размер может достигать нескольких десятков мегабайт. В отличие от L1 и L2, она является общей для всех ядер процессора.

Уровень L3 служит для временного хранения важных данных с относительно низкой вероятностью запроса, а также для обеспечения взаимодействия ядер процессора между собой.

Встречаются также процессоры с двухуровневой кэш-памятью. В них L2 совмещает в себе функции L2 и L3.

Влияние кэш-памяти процессора на быстродействие компьютера

При выполнении запроса на предоставление данных ядру, контроллер памяти ищет их сначала в кэше первого уровня, затем — в кэше второго и третьего уровней.

По статистике, кэш-память первого уровня любого современного процессора обеспечивает до 90 % кэш-попаданий. Второй и третий уровни — еще 90% от того, что осталось. И только около 1 % всех запросов процессора заканчиваются кэш-промахами.

Читайте также:  Shturmann link 300 как установить navitel

Указанные показатели касаются простых задач. С повышением нагрузки на процессор число кэш-промахов увеличивается.

Эффективность кэш-памяти процессора сводит к минимуму влияние скорости оперативной памяти на быстродействие компьютера. Например, компьютер одинаково хорошо будет работать с оперативной памятью 1066 МГц и 2400 МГц. При прочих равных условиях разница производительности в большинстве приложений не превысит 5%.

Пытаясь оценить эффективность кэш-памяти, пользователи чаще всего ищут ответы на следующие вопросы:

Какая структура кэш-памяти лучше: двух- или трехуровневая?

Трехуровневая кэш-память более эффективна.

Чтобы определить, как сильно L3 влияет на работу процессора, сайтом Tom’s Hardware был проведен эксперимент. Заключался он в замере производительности процессоров Athlon II X4 и Phenom II X4. Оба процессора оснащены одинаковыми ядрами. Первый отличается от второго лишь отсутствием кэш-памяти L3 и более низкой тактовой частотой.

Приведя частоты обеих процессоров к одинаковому показателю, было установлено, что наличие кэш-памяти L3 повышает производительность процессора Phenom на 5,8 %. Но это средний показатель. В одних приложениях он был почти равен нулю (офисные программы), в других – достигал 8% и даже больше (компьютерные 3D игры, архиваторы и др.).

Как влияет размер кэша на производительность процессора?

Оценивая размер кэш-памяти, нужно учитывать характеристики процессора и круг решаемых им задач.

Кэш-память двуядерного процессора редко превышает 3 MB. Тем более, если его тактовая частота ниже 3 Ггц. Производители прекрасно понимают, что дальнейшее увеличение размера кэша такого процессора не принесет прироста производительности, зато существенно повысит его стоимость.

Другое дело высокочастотные 4-, 6- или даже 8-миядерные процессоры. Некоторые из них (например, Intel Core i7) поддерживают технологию Hyper Threading, обеспечивающую одновременное выполнение каждым ядром двух задач. Естественно, что потенциал таких процессоров не может быть раскрыт с маленьким кэшем. Поэтому его увеличение до 15 или даже 20 MB вполне оправдано.

В процессорах Intel алгоритм наполнения кэш-памяти построен по так называемой инклюзивной схеме, когда содержимое кэшей верхнего уровня (L1, L2) полностью или частично дублируется в кэше нижнего уровня (L3). Это в определенной степени уменьшает полезный объем его пространства. С другой стороны, инклюзивная схема позитивно сказывается на взаимодействии ядер процессора между собой.

В целом же, эксперименты свидетельствуют, что в среднестатистическом "домашнем" процессоре влияние размера кэша на производительность находится в пределах 10 %, и его вполне можно компенсировать, например, высокой частотой.

Эффект от большого кэша наиболее ощутим при использовании архиваторов, в 3D играх, во время кодирования видео. В "не тяжелых" же приложениях разница стремится к нулю (офисные программы, интернет-серфинг, работа с фотографиями, прослушивание музыки и др.).

Многоядерные процессоры с большим кэшем необходимы на компьютерах, предназначенных для выполнения многопоточных приложений, одновременного решения нескольких сложных задач.

Особенно актуально это для серверов с высокой посещаемостью. В некоторых высоконагружаемых серверах и суперкомпьютерах предусмотрена даже установка кэш-памяти четвертого уровня (L4). Изготавливается она в виде отдельных микросхем, подключаемых к материнской плате.

Как узнать размер кэш-памяти процессора?

Существуют специальные программы, предоставляющие подробную информацию о процессоре компьютера, в том числе и о его кэш-памяти. Одной из них является программа CPU-Z.

Программа не требует установки. После ее запуска нужно перейти на вкладку "Caches" (см. изображение).

На примере видно, что проверяемый процессор оснащен трехуровневой кэш-памятью. Размер кэша L3 у него составляет 3 MB, L2 – 512 KB (256×2), L1 – 128 KB (32×2+32×2).

Можно ли как-то увеличить кэш-память процессора?

Как уже было сказано в одном из предыдущих пунктов, возможность увеличения кэш-памяти процессора предусмотрена в некоторых серверах и суперкомпьютерах, путем ее подключения к материнской плате.

В домашних же или офисных компьютерах такая возможность отсутствует. Кэш-память является внутренней неотъемлемой частью процессора, имеет очень маленькие физические размеры и не подлежит замене. А на обычных материнских платах нет разъемов для подключения дополнительной кэш-памяти.

Одной из особенностей компьютеров на базе процессоров AMD, которой они выгодно отличаются от платформ Intel, является высокий уровень совместимости процессоров и материнских плат. У владельцев относительно не старых настольных систем на базе AMD есть высокие шансы безболезненно "прокачать" компьютер путем простой замены процессора на "камень" из более новой линейки или же флагман из предыдущей.

Если вы принадлежите к их числу и задались вопросом "апгрейда", эта небольшая табличка вам в помощь.

В таблицу можно одновременно добавить до 6 процессоров, выбрав их из списка (кнопка "Добавить процессор"). Всего доступно больше 2,5 тыс. процессоров Intel и AMD.

Пользователю предоставляется возможность в удобной форме сравнивать производительность процессоров в синтетических тестах, количество ядер, частоту, структуру и объем кэша, поддерживаемые типы оперативной памяти, скорость шины, а также другие их характеристики.

Дополнительные рекомендации по использованию таблицы можно найти внизу страницы.

В этой базе собраны подробные характеристики процессоров Intel и AMD. Она содержит спецификации около 2,7 тысяч десктопных, мобильных и серверных процессоров, начиная с первых Пентиумов и Атлонов и заканчивая последними моделями.

Читайте также:  Как заделать батарею под окном

Информация систематизирована в алфавитном порядке и будет полезна всем, кто интересуется компьютерной техникой.

Таблица содержит информацию о почти 2 тыс. процессоров и будет весьма полезной людям, интересующимся компьютерным "железом". Положение каждого процессора в таблице определяется уровнем его быстродействия в синтетических тестах (расположены по убыванию).

Есть фильтр, отбирающий процессоры по производителю, модели, сокету, количеству ядер, наличию встроенного видеоядра и другим параметрам.

Для получения подробной информации о любом процессоре достаточно нажать на его название.

Люди обычно оценивают процессор по количеству ядер, тактовой частоте, объему кэша и других показателях, редко обращая внимание на поддерживаемые им технологии.

Отдельные из этих технологий нужны только для решения специфических заданий и в "домашнем" компьютере вряд ли когда-нибудь понадобятся. Наличие же других является непременным условием работы программ, необходимых для повседневного использования.

Так, полюбившийся многим браузер Google Chrome не работает без поддержки процессором SSE2. Инструкции AVX могут в разы ускорить обработку фото- и видеоконтента. А недавно один мой знакомый на достаточно быстром Phenom II (6 ядер) не смог запустить игру Mafia 3, поскольку его процессор не поддерживает инструкции SSE4.2.

Если аббревиатуры SSE, MMX, AVX, SIMD вам ни о чем не говорят и вы хотели бы разобраться в этом вопросе, изложенная здесь информация станет неплохим подспорьем.

Проверка стабильности работы центрального процессора требуется не часто. Как правило, такая необходимость возникает при приобретении компьютера, разгоне процессора (оверлокинге), при возникновении сбоев в работе компьютера, а также в некоторых других случаях.

В статье описан порядок проверки процессора при помощи программы Prime95, которая, по мнению многих экспертов и оверлокеров, является лучшим средством для этих целей.


ПОКАЗАТЬ ЕЩЕ


Мощность центрального процессора зависит от многих параметров. Одним из главных является тактовая частота, определяющая скорость выполнения вычислений. В этой статье мы поговорим о том, как эта характеристика влияет на производительность CPU.

Тактовая частота процессора

Для начала разберемся, что же такое тактовая частота (ТЧ). Само понятие весьма широкое, но применительно к CPU, можно сказать, что это количество операций, которое он может выполнить за 1 секунду. Этот параметр не зависит от количества ядер, не складывается и не умножается, то есть все устройство работает с одной частотой.

Написанное выше не касается процессоров на архитектуре ARM, в которых одновременно могут использоваться быстрые и медленные ядра.

Измеряется ТЧ в мега- или гигагерцах. Если на крышке ЦП указано «3.70 GHz», то это значит, что он способен выполнить 3 700 000 000 действий в секунду (1 герц – одна операция).

Встречается и другое написание – «3700 МГц», чаще всего в карточках товаров в интернет-магазинах.

На что влияет тактовая частота

Здесь все предельно просто. Во всех приложениях и при любых сценариях использования величина ТЧ в значительной мере влияет на производительность процессора. Чем больше гигагерц, тем быстрее он работает. Например, шестиядерный «камень» с 3.7 GHz будет быстрее аналогичного, но с 3.2 GHz.

Значения частоты напрямую указывают на мощность, но не стоит забывать о том, что каждое поколение процессоров имеет свою архитектуру. Более новые модели окажутся быстрее при тех же характеристиках. Впрочем, «старичков» можно разгонять.

Разгон

Тактовую частоту процессора можно поднять с помощью различных инструментов. Правда, для этого необходимо соблюсти несколько условий. И «камень», и материнская плата должны поддерживать разгон. В некоторых случаях достаточно только разгонной «материнки», в настройках которой повышается частота системной шины и других компонентов. На нашем сайте довольно много статей, посвященных этой теме. Для того чтобы получить необходимые инструкции, достаточно на главной странице ввести поисковый запрос «разгон процессора» без кавычек.

Как игры, так и все рабочие программы положительно реагируют на высокие частоты, но не стоит забывать, что чем выше показатель, тем больше температуры. Особенно это касается ситуаций, когда был применен разгон. Здесь стоит задуматься о том, чтобы найти компромисс между нагревом и ТЧ. Не стоит также забывать о производительности системы охлаждения и качестве термопасты.

Заключение

Тактовая частота, наряду с количеством ядер, является основным показателем скорости работы процессора. Если требуются высокие значения, выбирайте модели с изначально большими частотами. Можно обратить внимание и на «камни», подлежащие разгону, только не забудьте о возможном перегреве и позаботьтесь о качестве охлаждения.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Быстродействие процессора — это одна из важнейших его характеристик, определяющая эффективность работы всей микропроцессорной системы в целом. Быстродействие процессора зависит от множества факторов, что затрудняет сравнение быстродействия даже разных процессоров внутри одного семейства, не говоря уже о процессорах разных фирм и разного назначения.

Выделим важнейшие факторы, влияющие на быстродействие процессора.

Прежде всего, быстродействие зависит от тактовой частоты процессора. Все операции внутри процессора выполняются синхронно, тактируются единым тактовым сигналом. Понятно, что чем больше тактовая частота, тем быстрее работает процессор, причем, например, двукратное увеличение тактовой частоты какого-то процессора снижает вдвое время выполнения команд этим процессором.

Однако надо учитывать, что разные процессоры выполняют одинаковые команды за разное количество тактов, причем количество тактов, затрачиваемых на команду, может изменяться от одного такта до десятков или даже сотен. В некоторых процессорах за счет распараллеливания микроопераций на команду тратится даже меньше одного такта.

Читайте также:  Корень в слове страница

Количество тактов, затрачиваемых на выполнение команды, зависит от сложности этой команды и от методов адресации операндов. Например, быстрее всего (за меньшее число тактов) выполняются команды пересылки данных между внутренними регистрами процессора. Медленнее всего (за большое число тактов) выполняются сложные арифметические команды с плавающей запятой, операнды которых хранятся в памяти.

Первоначально для количественной оценки производительности процессоров применялась единица измерения MIPS (Mega Instruction Per Second), соответствовавшая количеству миллионов выполняемых инструкций (команд) за секунду. Естественно, изготовители микропроцессоров старались ориентироваться на самые быстрые команды. Понятно, что подобный показатель не слишком удачен. Для измерения производительности при выполнении вычислений с плавающей запятой (точкой) чуть позже была предложена единица FLOPS (Floating point Operations Per Second), но она по определению узкоспециальная, так как в некоторых системах операции с плавающей запятой просто не используются.

Другой аналогичный показатель быстродействия процессора — время выполнения коротких (быстрых) операций. Для примера в таблице 3.1 представлены показатели быстродействия нескольких 8-разрядных и 16-разрядных процессоров. В настоящее время этот показатель практически не используется, как и MIPS.

Время выполнения команд — важный, но далеко не единственный фактор, определяющий быстродействие. Большое значение имеет также структура системы команд процессора. Например, некоторым процессорам для выполнения какой-то операции понадобится одна команда, а другим процессорам — несколько команд. Какие-то процессоры имеют систему команд, позволяющую быстро решать задачи одного типа, а какие-то — задачи другого типа. Важны и методы адресации, разрешенные в данном процессоре, и наличие сегментирования памяти, и способы взаимодействия процессора с устройствами ввода/вывода и т.д.

Существенно влияет на быстродействие системы в целом и то, как процессор «общается» с памятью команд и памятью данных, применяется ли совмещение выборки команд из памяти с выполнением ранее выбранных команд.

Таблица 3.1. Параметры некоторых процессоров.
Процессор
Фирма Intel Motorola Motorola Intel
Разрядность
Количество команд
Тактовая частота, МГц
Время выполнения коротких операций, мкс 1,3 0,5 0,4

Быстродействие системы в целом определяется также и разрядностью процессора. Например, 8-разрядный процессор будет медленнее пересылать и обрабатывать большие массивы данных, чем 16-разрядный процессор. Точно так же 16-разрядный процессор будет значительно медленнее работать с большими числами (большими, чем 65536), чем 32-разрядный процессор.

При высокой сложности решаемых задач быстродействие системы зависит и от общего объема системной памяти. Ведь если системной памяти мало, системе приходится сохранять данные во внешней памяти (например, на магнитном диске), а это очень сильно (на несколько порядков) замедляет работу. Так что разрядность шины адреса процессора тоже важна.

Поэтому количественные показатели производительности процессоров очень условны, они лишь косвенно характеризуют быстродействие системы на базе этого процессора. Тем не менее, некоторые производители предлагают количественные показатели для своих процессоров, которые характеризуют время выполнения специально составленных тестовых программ, содержащих самые различные команды в тех или иных соотношениях.

Так, для сравнения производительности 32-разрядных процессоров фирма Intel, производящая процессоры для персональных компьютеров, в 1992 году предложила свою единицу измерения iCOMP Index (Intel COmparative Microprocessor Performance). Для вычисления этого показателя используется смесь 16- и 32-битных целочисленных команд, команд с плавающей точкой, команд обработки графики и видео. В качестве базового взят процессор i486SX-25, чей индекс принят равным 100. В Таблице 3.2 приведены индексы iCOMP для некоторых процессоров фирмы Intel. Как видно из таблицы, за счет более развитой архитектуры процессоры семейства 486 всегда быстрее процессоров семейства 386, а любой Pentium быстрее любого процессора из семейства 486. Тактовая частота (указана в таблице через черточку) определяет производительность только в пределах одного семейства. В 1996 году разработчиками Intel был предложен другой показатель — iCOMP Index 2.0, для вычисления которого не используются 16-разрядные команды, зато введен мультимедийный тест, а за базу взят Pentium-120, чей индекс принят равным 100. В таблице 3.3 представлены эти показатели для некоторых типов процессоров Intel.

При этом надо учитывать, что измерения проводятся в составе системы, настроенной на максимальное быстродействие именно данных процессоров, и только самой фирмой Intel.

Ценность этих показателей и всех им подобных не слишком велика. Для конкретного компьютера и разных процессоров величина показателя может предоставить вполне объективные данные, позволяющие оценить, например, целесообразность замены процессора на более мощный. Но усредненность показателей iCOMP не позволяет точно сказать, как будет себя вести процессор в различных задачах, которые ориентированы на преимущественное использование разных типов команд.

Таблица 3.2. Индексы производительности iCOMP.
i486SX-25 i486DX4-100
i386DX-33 Pentium-60
i486SX-33 Pentium-100
i486DX2-66 Pentium-133
Таблица 3.3. Индексы производительности iCOMP Index 2.0.
Pentium-100 Pentium MMX-166
Pentium-120 Pentium MMX-233
Pentium-150 Pentium Pro-200
Pentium-200 Pentium II-266

Точная оценка быстродействия процессора возможна только в составе конкретной системы при решении определенной задачи. Но все перечисленные здесь факторы можно и нужно учитывать при выборе процессора. А количественные показатели помогают сделать выбор.

Не нашли то, что искали? Воспользуйтесь поиском:

Ссылка на основную публикацию
Чем открывать файл doc
Файлы формата DOC открываются специальными программами. Существует 2 типа форматов DOC, каждый из которых открывается разными программами. Чтобы открыть нужный...
Функция датазнач в excel
Возвращает числовой формат даты, представленной в виде текста. Функция ДАТАЗНАЧ используется для преобразования даты из текстового представления в числовой формат....
Функция если ячейка содержит определенный текст
Функция ЕСЛИ СОДЕРЖИТ Наверное, многие задавались вопросом, как найти функцию в EXCEL«СОДЕРЖИТ» , чтобы применить какое-либо условие, в зависимости от...
Чем открываются файлы pdf
Файлы формата PDF распространены для книг, журналов, документов (в том числе, требующих заполнения и подписи) и других текстовых и графических...
Adblock detector