Что такое вейвлет преобразование

Что такое вейвлет преобразование

Введение

Некоторые идеи теории вейвлетов появились очень давно. Например, уже в 1910 году А.Хаар опубликовал полную ортонормальную систему базисных функций с локальной областью определения (теперь они называются вейвлетами Хаара). Первое упоминание о вейвлетах появилось в литературе по цифровой обработке и анализу сейсмических сигналов (работы А.Гроссмана и Ж.Морле).

В последнее время возникло и оформилось целое научное направление, связанное с вейвлет-анализом и теорией вейвлет-преобразования. Вейвлеты широко применяются для фильтрации и предварительной обработки данных, анализа состояния и прогнозирования ситуации на фондовых рынках, распознавания образов, при обработке и синтезе различных сигналов, например речевых, медицинских, для решения задач сжатия и обработки изображений, при обучении нейросетей и во многих других случаях.

Несмотря на то, что теория вейвлет-преобразования уже в основном разработана, точного определения, что же такое "вейвлет", какие функции можно назвать вейвлетами, насколько мне известно, не существует. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Эти функции могут быть симметричными, асимметричными и несимметричными.

Различают вейвлеты с компактной областью определения и не имеющие таковой. Некоторые функции имеют аналитическое выражение, другие – быстрый алгоритм вычисления связанного с ними вейвлет-преобразования. Попробуем дать вначале неформальное определение вейвлет-преобразования, а затем – его точное математическое обоснование.

Вейвлеты и многомасштабный анализ

Рассмотрим задачу, которая очень часто встречается на практике: у нас есть сигнал (а сигналом может быть все, что угодно, начиная от записи показаний датчика и кончая оцифрованной речью или изображением). Идея многомасштабного анализа (multiscale analysis, multiresolutional analysis) заключается в том, чтобы взглянуть на сигнал сначала вплотную – под микроскопом, затем через лупу, потом отойти на пару шагов, потом посмотреть издалека (рис.1).

Что это нам дает? Во-первых, мы можем, путем последовательного огрубления (или уточнения) сигнала выявлять его локальные особенности (ударение в речи или характерные детали изображения) и подразделять их по интенсивности. Во-вторых, таким образом обнаруживается динамика изменения сигнала в зависимости от масштаба.

Если резкие скачки (например, аварийное отклонение показаний датчика) во многих случаях видны "невооруженным глазом", то взаимодействия событий на мелких масштабах, перерастающие в крупномасштабные явления (так, мощный транспортный поток состоит из движения многих отдельных автомобилей), увидеть очень сложно. И наоборот, сосредоточившись только на мелких деталях, можно не заметить явлений, происходящих на глобальном уровне.

Идея применения вейвлетов для многомасштабного анализа заключается в том, что разложение сигнала производится по базису, образованному сдвигами и разномасштабными копиями функции-прототипа (то есть вейвлет-преобразование по своей сути является фрактальным). Такие базисные функции называются вейвлетами (wavelet), если они определены на пространстве L 2 (R) (пространство комплекснозначных функций f(t) на прямой с ограниченной энергией), колеблются вокруг оси абсцисс и быстро сходятся к нулю по мере увеличения абсолютного значения аргумента (рис.2).

Оговоримся сразу, что это определение не претендует на полноту и точность, а дает лишь некий "словесный портрет" вейвлета. Таким образом, свертка сигнала с одним из вейвлетов позволяет выделить характерные особенности сигнала в области локализации этого вейвлета, причем чем больший масштаб имеет вейвлет, тем более широкая область сигнала будет оказывать влияние на результат свертки.

Согласно принципу неопределенности, чем лучше функция сконцентрирована во времени, тем больше она размазана в частотной области. При перемасштабировании функции произведение временного и частотного диапазонов остается постоянным и представляет собой площадь ячейки в частотно-временной (фазовой) плоскости.

Преимущество вейвлет-преобразования перед, например, преобразованием Габора заключается в том, что оно покрывает фазовую плоскость ячейками одинаковой площади, но разной формы (рис.3). Это позволяет хорошо локализовать низкочастотные детали сигнала в частотной области (преобладающие гармоники), а высокочастотные – во временной (резкие скачки, пики и т.п.).

Более того, вейвлет-анализ позволяет исследовать поведение фрактальных функций – то есть не имеющих производных ни в одной своей точке!

Ортогональное вейвлет-преобразование

Вейвлет-преобразование несет огромное количество информации о сигнале, но, с другой стороны, обладает сильной избыточностью, так как каждая точка фазовой плоскости оказывает влияние на его результат.

Вообще говоря, для точного восстановления сигнала достаточно знать его вейвлет-преобразование на некоторой довольно редкой решетке в фазовой плоскости (например, только в центре каждой ячейки на рис.3). Следовательно, и вся информация о сигнале содержится в этом довольно небольшом наборе значений.

Идея здесь заключается в том, чтобы масштабировать вейвлет в некоторое постоянное (например, 2) число раз, и смещать его во времени на фиксированное расстояние, зависящее от масштаба. При этом все сдвиги одного масштаба должны быть попарно ортогональны – такие вейвлеты называются ортогональными.

При таком преобразовании выполняется свертка сигнала с некоторой функцией (так называемой скейлинг-функцией, о ее свойствах мы расскажем позже) и с вейвлетом, связанным с этой скейлинг-функцией. В результате мы получаем "сглаженную" версию исходного сигнала и набор "деталей", отличающих сглаженный сигнал от исходного.

Последовательно применяя такое преобразование, мы можем получить результат нужной нам степени детальности (гладкости) и набор деталей на разных масштабах – то, о чем говорили в начале статьи. Более того, применив вейвлет-преобразование к заинтересовавшей нас детали сигнала, мы можем получить ее "увеличенное изображение". И наоборот, отбросив несущественные детали и выполнив обратное преобразование, мы получим сигнал, очищенный от шумов и случайных выбросов (например, "убрать" случайно попавшую в кадр птицу на фотографии здания).

Читайте также:  Блок питания с акб

Дискретное вейвлет-преобразование и другие направления вейвлет-анализа

Очевидно, идея использовать вейвлет-преобразование для обработки дискретных данных является весьма привлекательной (дискретизация данных необходима, например, при их обработке на ЭВМ). Основная трудность заключается в том, что формулы для дискретного вейвлет-преобразования нельзя получить просто дискретизацией соответствующих формул непрерывного преобразования.

К счастью, И.Добеши удалось найти метод, позволяющий построить (бесконечную) серию ортогональных вейвлетов, каждый из которых определяется конечным числом коэффициентов. Стало возможным построить алгоритм, реализующий быстрое вейвлет-преобразование на дискретных данных (алгоритм Малла). Достоинство этого алгоритма, помимо всего вышесказанного, заключается в его простоте и высокой скорости: и на разложение, и на восстановление требуется порядка cN операций, где с – число коэффициентов, а N – длина выборки.

В последнее время теория вейвлет-преобразования переживает просто революционный рост. Появились и развиваются такие направления, как биортогональные вейвлеты, мультивейвлеты, вейвлет-пакеты, лифтинг и т.д.

Применение вейвлет-преобразования

В заключение нашей статьи перечислим некоторые области, где использование вейвлетов может оказаться (или уже является) весьма перспективным.

  1. Обработка экспериментальных данных. Поскольку вейвлеты появились именно как механизм обработки экспериментальных данных, их применение для решения подобных задач представляется весьма привлекательным до сих пор. Вейвлет-преобразование дает наиболее наглядную и информативную картину результатов эксперимента, позволяет очистить исходные данные от шумов и случайных искажений, и даже "на глаз" подметить некоторые особенности данных и направление их дальнейшей обработки и анализа. Кроме того, вейвлеты хорошо подходят для анализа нестационарных сигналов, возникающих в медицине, анализе фондовых рынков и других областях.
  2. Обработка изображений. Наше зрение устроено так, что мы сосредотачиваем свое внимание на существенных деталях изображения, отсекая ненужное. Используя вейвлет-преобразование, мы можем сгладить или выделить некоторые детали изображения, увеличить или уменьшить его, выделить важные детали и даже повысить его качество!
  3. Сжатие данных. Особенностью ортогонального многомасштабного анализа является то, что для достаточно гладких данных полученные в результате преобразования детали в основном близки по величине к нулю и, следовательно, очень хорошо сжимаются обычными статистическими методами. Огромным достоинством вейвлет-преобразования является то, что оно не вносит дополнительной избыточности в исходные данные, и сигнал может быть полностью восстановлен с использованием тех же самых фильтров. Кроме того, отделение в результате преобразования деталей от основного сигнала позволяет очень просто реализовать сжатие с потерями – достаточно просто отбросить детали на тех масштабах, где они несущественны! Достаточно сказать, что изображение, обработанное вейвлетами, можно сжать в 3-10 раз без существенных потерь информации (а с допустимыми потерями – до 300 раз!). В качестве примера отметим, что вейвлет-преобразование положено в основу стандарта сжатия данных MPEG4.
  4. Нейросети и другие механизмы анализа данных. Большие трудности при обучении нейросетей (или настройке других механизмов анализа данных) создает сильная зашумленность данных или наличие большого числа "особых случаев" (случайные выбросы, пропуски, нелинейные искажения и т.п.). Такие помехи способны скрывать характерные особенности данных или выдавать себя за них и могут сильно ухудшить результаты обучения. Поэтому рекомендуется очистить данные, прежде чем анализировать их. По уже приведенным выше соображениям, а также благодаря наличию быстрых и эффективных алгоритмов реализации, вейвлеты представляются весьма удобным и перспективным механизмом очистки и предварительной обработки данных для использования их в статистических и бизнес-приложениях, системах искусственного интеллекта и т.п.
  5. Системы передачи данных и цифровой обработки сигналов. Благодаря высокой эффективности алгоритмов и устойчивости к воздействию помех, вейвлет-преобразование является мощным инструментом в тех областях, где традиционно использовались другие методы анализа данных, например, преобразование Фурье. Возможность применения уже существующих методов обработки результатов преобразования, а также характерные особенности поведения вейвлет-преобразования в частотно-временной области позволяют существенно расширить и дополнить возможности подобных систем.

И это еще далеко не все!

Заключение

Несмотря на то, что математический аппарат вейвлет-анализа хорошо разработан и теория, в общем, оформилась, вейвлеты оставляют обширное поле для исследований. Достаточно сказать, что выбор вейвлета, наиболее подходящего для анализа конкретных данных, представляет собой скорее искусство, чем рутинную процедуру. Кроме того, огромное значение имеет задача разработки приложений, использующих вейвлет-анализ – как в перечисленных областях, так и во многих других, перечислить которые просто не представляется возможным.

Определения, свойства, виды

Принцип кратномасштабного анализа

Дискретное вейвлет преобразование

Непрерывное вейвлет преобразование

Вейвлет-анализ разработан для решения задач, оказавшихся слишком сложными для традиционного анализа Фурье. Преобразование Фурье представляет сигнал, заданный во временной области, в виде разложения по ортогональным базисным функциям (синусам и косинусам) с выделением частотных компонентов. Недостаток преобразования Фурье заключается в том, что частотные компоненты не могут быть локализованы во времени, обуславливая его применимость только к анализу стационарных сигналов, в то время как многие сигналы имеют сложные частотно-временные характеристики. Как правило, такие сигналы состоят из близких по времени, короткоживущих высокочастотных компонентов и долговременных, близких по частоте низкочастотных компонентов. Для анализа таких сигналов необходим метод, способный обеспечить хорошее разрешение как по частоте, так и по времени. Первое необходимо для локализации низкочастотных составляющих, второе — для выделения компонентов высокой частоты. Существует два подхода к анализу нестационарных сигналов такого типа. Первый основан на локальном преобразовании Фурье (short-time Fourier transform). Следуя по этому пути, нестационарный сигнал сводится к стационарному путем его предварительного разбиения на сегменты (фреймы), статистика которых не меняется со временем. Второй подход заключается в использовании вейвлет-преобразования. Не так уж трудно рассказать без математической строгости, что такое вейвлет-анализ. Всем известно, что любой сигнал можно разложить в сумму гармоник (синусоид) разной частоты. Но синусоидальные волны бесконечны, и не очень-то отслеживают изменения сигнала во времени. Чтобы уловить эти изменения, вместо бесконечных волн можно взять совершенно одинаковые, но разнесенные по времени короткие "всплески". Однако, как оказалось, этого недостаточно, надо добавить еще их всевозможные растянутые и сжатые копии. Вот теперь сигнал можно разложить на сумму таких всплесков разного размера и местоположения. По сути, это и есть вейвлет-анализ.

Читайте также:  Bit3251 datasheet не работает подсветка

Коэффициенты разложения, по сути несущие информацию об эволюции сигнала, зависят от выбора изначального всплеска. Для каждой прикладной задачи можно подобрать наиболее приспособленный (именно для нее) всплеск, который и называется вейвлетом. Математическая сторона вейвлет-анализа — вещь довольно тонкая, хотя и весьма наглядная. Вообще, реально работающие в приложениях математические методы всегда (почему-то) опираются на красивую чистую математику — это экспериментальный факт. А вот прикладная сторона вейвлетов проста на столько, что дальше некуда. При этом вейвлет-преобразование не только работает быстрее, чем преобразование Фурье, но и его программная реализация несравненно проще.

Вейвлет (от англ. wavelet), всплеск) — это математическая функция, позволяющая анализировать различные частотные компоненты данных. График функции выглядит как волнообразные колебания с амплитудой, уменьшающейся до нуля вдали от начала координат. Однако это частное определение — в общем случае анализ сигналов производится в плоскости вейвлет-коэффициентов (масштаб — время — уровень) (Scale-Time-Amplitude). Вейвлет-коэффициенты определяются интегральным преобразованием сигнала. Полученные вейвлет-спектрограммы принципиально отличаются от обычных спектров Фурье тем, что дают четкую привязку спектра различных особенностей сигналов ко времени.

В начале развития области употреблялся термин "волночка" — калька с английского. Английское слово "wavelet" означает в переводе "маленькая волна", или "волны, идущие друг за другом". И тот и другой перевод подходит к определению вейвлетов. Вейвлеты — это семейство функций, которые локальны во времени и по частоте ("маленькие"), и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они "идут друг за другом")

Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как непрерывное вейвлет-преобразование (НВП) (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие.

В конце 20-го века появляются инструментальные средства по вейвлетам в системах компьютерной математики Mathcad,MATLAB и Mathematica (см. их описание в книге Дьяконова В. П.). Вейвлеты стали широко применяться в технике обработки сигналов и изображений, в частности для компрессии их и очистки от шума. Были созданы интегральные микросхемы для вейвлет-обработки сигналов и изображений.

Определения, свойства, виды

Существует несколько подходов к определению вейвлета: через масштабный фильтр, масштабную функцию, вейвлет-функцию. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Вейвлетные функции могут быть симметричными, асимметричными и несимметричными, с компактной областью определения и не имеющие таковой, а также иметь различную степень гладкости.

Для осуществления вейвлет-преобразования вейвлет-функции должны удовлетворять следующим критериям[1]:

1. Вейвлет должен обладать конечной энергией:

2. Если фурье-преобразование для , то есть

тогда должно выполняться следующее условие:

Это условие называется условием допустимости, и из него следует что вейвлет при нулевой частотной компоненте должен удовлетворять условию или, в другом случае, вейвлет должен иметь среднее равное нулю.

3. Дополнительный критерий предъявляется для комплексных вейвлетов, а именно, что для них Фурье-преобразование должно быть одновременно вещественным и должно убывать для отрицательных частот.

4. Локализация: вейвлет должен быть непрерывным, интегрируемым, иметь компактный носитель и быть локализованным как во времени (в пространстве), так и по частоте. Если вейвлет в пространстве сужается, то его средняя частота повышается, спектр вейвлета перемещается в область более высоких частот и расширяется. Этот процесс должен быть линейным – сужение вейвлета вдвое должно повышать его среднюю частоту и ширину спектра также вдвое.

Свойства вейвлет преобразования

2. Инвариантность относительно сдвига

Сдвиг сигнала во времени на t0 приводит к сдвигу вейвлет-спектра также на t0.

Читайте также:  Ошибка воспроизведения видео на ютубе идентификатор

3. Инвариантность относительно масштабирования

Растяжение (сжатие) сигнала приводит к сжатию (растяжению) вейвлет-спектра сигнала.

Отсюда следует, что безразлично, дифференцировать ли функцию или анализирующий вейвлет. Если анализирующий вейвлет задан формулой, то это может быть очень полезным для анализа сигналов. Это свойство особенно полезно, если сигнал задан дискретным рядом.

Непрерывное вейвлет-преобразование

Вейвлет преобразование для непрерывного сигнала относительно вейвлет функции определяется следующим образом[1]:

где означает комплексное сопряжение для , параметр соответствует временному сдвигу, и называется параметром положения, параметр 0" border="0" /> задает масштабирование и называется параметром растяжения.

— весовая функция.

Мы можем определить нормированную функцию следующим образом

что означает временной сдвиг на b и масштабирование по времени на a. Тогда формула вейлет-преобразования изменится на

Исходный сигнал может быть восстановлен по формуле обратного преобразования

Дискретное вейвлет-преобразование

В дискретном случае, параметры масштабирования a и сдвига b представлены дискретными величинами:

и

Тогда анализирующий вейвлет имеет следующий вид:

где m и n — целые числа.

В таком случае для непрерывного сигнала дискретное вейвлет-преобразование и его обратное преобразование запишутся следующими формулами:

Величины также известны как вейвлет-коэффициенты.

есть постоянная нормировки.

Графическое представление

Применение

Вейвлет-преобразование широко используется для анализа сигналов. Помимо этого, оно находит большое применение в области сжатия данных. В дискретном вейвлет-преобразовании наиболее значимая информация в сигнале содержится при высоких амплитудах, а менее полезная — при низких. Сжатие данных может быть получено за счет отбрасывания низких амплитуд. Вейвлет-преобразование позволяет получить высокое соотношение сжатия в сочетании с хорошим качеством восстановленного сигнала. Вейвлет-преобразование было выбрано для стандартов сжатия изображений JPEG2000 и ICER. Однако, при малых сжатиях вейвлет-преобразование уступает по качеству в сравнении с оконным Фурье-преобразованием, которое лежит в основе стандарта JPEG.

Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, т.к. они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований. Отсюда следует, что при практическом использовании вейвлетов необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа.

Примечания

  • Вейвлетные преобразования обладают всеми достоинствами преобразований Фурье.
  • Вейвлетные базисы могут быть хорошо локализованными как по частоте, так и по времени. При выделении в сигналах хорошо локализованных разномасштабных процессов можно рассматривать только те масштабные уровни разложения, которые представляют интерес.
  • Базисные вейвлеты могут реализоваться функциями различной гладкости.
  • Можно выделить один недостаток, это относительная сложность преобразования.

См. также

Литература

  • Addison P.S. The Illustrated Wavelet Transform Handbook. — IOP, 2002.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Вейвлет-преобразование" в других словарях:

Дискретное вейвлет-преобразование — Пример 1 го уровня дискретного вейвлет преобразования изображения. Вверху оригинальное полноцветное изображение, в середине вейвлет преобразование, сделанное по горизонтали исходного изображения (только канал яркости), внизу вейвлет… … Википедия

Непрерывное вейвлет-преобразование — (англ. continuous wavelet transform, CWT) это преобразование, отображающее данную вещественнозначную функцию , определенную на временной оси переменной , в функцию двух переменных и … Википедия

дискретное вейвлет-преобразование телевизионного видеосигнала — Спектральное преобразование телевизионного видеосигнала с помощью вейвлет процесса, связанного с обработкой телевизионного изображения целиком, достигаемое путем изъятия нулевых коэффициентов в процессе преобразования и кодирования. [ГОСТ Р 52210 … Справочник технического переводчика

дискретное вейвлет-преобразование телевизионного видеосигнала — 51 дискретное вейвлет преобразование телевизионного видеосигнала: Спектральное преобразование телевизионного видеосигнала с помощью вейвлет процесса, связанного с обработкой телевизионного изображения целиком, достигаемое путем изъятия нулевых… … Словарь-справочник терминов нормативно-технической документации

Дискретное вейвлет-преобразование телевизионного видеосигнала — 1. Спектральное преобразование телевизионного видеосигнала с помощью вейвлет процесса, связанного с обработкой телевизионного изображения целиком, достигаемое путем изъятия нулевых коэффициентов в процессе преобразования и кодирования… … Телекоммуникационный словарь

Вейвлет Хаара — один из первых и наиболее простых вейвлетов. Он был предложен венгерским математиком Альфредом Хааром в 1909 году. Вейвлеты Хаара ортогональны, обладают компактным н … Википедия

ВЕЙВЛЕТ-АНАЛИЗ — – Вейвлет преобразование переводит функцию одной переменной t в плоскость двух переменных t и a. При этом t характеризует положение центра вейвлета на оси времени, параметр a – временной масштаб осцилляций и в случае использования вейвлета Морле… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

Вейвлет — Вейвлеты (от англ. wavelet), всплески (гораздо реже[1] вэйвлеты) это математические функции, позволяющие анализировать различные частотные компоненты данных. Однако это частное определение в общем случае анализ сигналов… … Википедия

Вейвлет-разложение — В численном и функциональном анализе дискретные вейвлет преобразования (ДВП) относятся к вейвлет преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками). Первое ДВП было придумано венгерским математиком Альфредом Хааром … Википедия

Вейвлет Койфлет — порядка 1 К вейвлет функциям с компактным носителем относятся вейвлеты Добеши, койфлеты и симмлеты. Метод построения вейвлет функций с компактным носителем принадлежит Ингр … Википедия

Ссылка на основную публикацию
Что такое vpn на планшете
Каждый из пользователей интернета хоть раз да слышал о VPN, но мало кто задумывался о его необходимости и роли для...
Что за сайт mirror bullshit agency
MIRROR.BULLSHIT.AGENCY Название сайта: Поиск по объявлениям на Авите Описание: Поиск по объявлениям на Авите Поиск объявлений по номеру Номер: Искать...
Что за формат webrip
Классификация видео для пользователей дело обычное. У всех на слуху HD, 720p и прочие. Но вот про «рипы» мало кто...
Что такое ussd сообщение
Содержание статьи Что такое ussd запрос Как отключить GPRS-интернет Какие есть USSD-коды и полезные номера у Мегафона USSD является сокращением...
Adblock detector