Центр масс как определить

Центр масс как определить

Механическая система — совокупность материальных точек: — движущихся согласно законам классической механики; и — взаимодействующих друг с другом и с телами, не включенными в эту совокупность.

Масса проявляется в природе несколькими способами.

Пассивная гравитационная масса [1] показывает, с какой силой тело взаимодействует с внешними гравитационными полями — фактически эта масса положена в основу измерения массы взвешиванием в современной метрологии.

Активная гравитационная масса [2] показывает, какое гравитационное поле создаёт само это тело — гравитационные массы фигурируют в законе всемирного тяготения.

Инертная масса характеризует инертность тел и фигурирует в одной из формулировок второго закона Ньютона. Если произвольная сила винерциальной системе отсчёта одинаково ускоряет разные исходно неподвижные тела, этим телам приписывают одинаковую инертную массу.

Гравитационная и инертная массы равны друг другу (с высокой точностью — порядка 10 −13 — экспериментально, а в большинстве физических теорий, в том числе всех, подтверждённых экспериментально — точно), поэтому в том случае, когда речь идёт не о «новой физике», просто говорят о массе, не уточняя, какую из них имеют в виду.

В классической механике масса системы тел равна сумме масс составляющих её тел. В релятивистской механике масса не является аддитивной физической величиной, то есть масса системы в общем случае не равна сумме масс компонентов, а включает в себя энергию связи и зависит от характера движения частиц друг относительно друга

Центр масс — (в механике) геометрическая точка, характеризующаядвижение тела или системы частиц, как целого [1] . Не является тождественным понятию центра тяжести (хотя чаще всего совпадает).

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом [2] :

где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки.

Для случая непрерывного распределения масс:

где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением [3] :

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Понятие центра масс широко используется в механике и физике.

Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

Центры масс однородных фигур

У отрезка — середина.

У многоугольников (как сплошных плоских фигур, так и каркасов):

У параллелограмма — точка пересечения диагоналей.

У треугольника — точка пересечения медиан (центроид).

У правильного многоугольника — центр поворотной симметрии.

У полукруга — точка, делящая перпендикулярный радиус в отношении 4:3π от центра круга.

Количество движения = импульс

Количество движения системы (импульс системы).

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем II закон Ньютона в другой форме, учитывая, что ускорение Тогда следовательно

Произведение силы на время ее действия равно приращению импульса тела (рис. 1):

Где — импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов , замкнется. Следова­тельно, по величине нель­зя полностью судить о ха­рактере движения системы.

Найдем формулу, с по­мощью которой значительно легче вычислять величину , а также уяснить ее смысл.

Беря от обеих частей производную по времени, получим

Читайте также:  Spore сохранения все открыто

Отсюда находим, что

количество движения (импульс) системы равно произведению массы всей системы на скорость ее центра масс. Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина не будет характеризовать вращательную часть движения вокруг центра масс. Например, для катящегося колеса независимо от того, как вращается колесо вокруг его центра масс С.

Таким образом, количество движения характеризует только поступательное движение системы. При сложном же движении величина характеризует только поступательную часть движения системы вместе с центром масс.

Главный момент количеств движения (импульса) системы.

Главным моментом количеств движения (или кинетическом моментом) системы относительно данного центра О называется величина , равная геометрической сумме моментов количеств движения всех точек системы относи­тельно этого центра.

Аналогично определяются моменты количеств движения системы относительно координатных осей:

При этом представляют собою одновременно проекции вектора на координатные оси.

Подобно тому, как количество движения системы является характеристикой ее поступательного движения, главный момент количеств движения системы является характеристи­кой вращательного движения системы.

Чтобы уяснить механический смысл величины L и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижной оси (рис.6).При этом, как обычно, определение вектора сводится к определению его проекций .

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину Lz, т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость . Сле­довательно, для этой точки . Тогда для всего тела, вынося общий множитель ω за скобку, получим

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z. Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

Центр масс, центр ине́рции, барице́нтр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр) — (в механике) — геометрическая точка, характеризующая движение тела или системы частиц как целого [1] . В общем случае центр масс не совпадает с центром тяжести, совпадение происходит только у систем материальных точек и тел с однородной по объёму плотностью в однородном гравитационном поле.

Введение понятия центра тяжести удобно во многих приложениях механики и упрощает расчеты при использовании системы координат, связанной с центром масс. Если на механическую систему не действуют внешние силы, то центр масс такой системы движется с постоянной по величине и направлению скоростью.

Джованни Чева применял рассмотрения центров масс к решению геометрических задач, таких как теоремы Менелая и теоремы Чевы. [2]

Содержание

Определение [ править | править код ]

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом [3] :

r → c = ∑ i m i r → i ∑ i m i , <displaystyle <vec >_=<frac <sum limits _m_<vec >_><sum limits _m_>>,>

где r → c <displaystyle <vec >_> — радиус-вектор центра масс, r → i <displaystyle <vec >_> — радиус-вектор i -й точки системы, m i <displaystyle m_> — масса i -й точки.

Для случая непрерывного распределения масс:

r → c = 1 M ∫ V ρ ( r → ) r → d V , <displaystyle <vec >_=<1 over M>int limits _
ho (<vec
>)<vec >dV,> M = ∫ V ρ ( r → ) d V , <displaystyle M=int limits _
ho (<vec
>)dV,>

где M <displaystyle M> — суммарная масса системы, V <displaystyle V> — объём, ρ <displaystyle
ho > — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Если система состоит не из материальных точек, а из протяжённых тел с массами M i <displaystyle M_> , то радиус-вектор центра масс такой системы R c <displaystyle R_> связан с радиус-векторами центров масс тел R c i <displaystyle R_> соотношением [4] :

R → c = ∑ i M i R → c i ∑ i M i . <displaystyle <vec >_=<frac <sum limits _M_<vec >_><sum limits _M_>>.>

Действительно, пусть даны несколько систем материальных точек с массами M 1 , M 2 , . . . M N . <displaystyle M_<1>,M_<2>. M_.> Радиус-вектор R → c n <displaystyle <vec >_>> n <displaystyle n> -ной системы:

R → c n = ∑ i n m i n r → i n ∑ i n m i n = ∑ i n m i n r → i n M n , n = 1 , 2 , . . . N . <displaystyle <vec >_>=<frac <sum limits _>m_><vec >_>><sum limits _>m_>>>=<frac <sum limits _>m_><vec >_>>>>, n=1,2. N.> R → c = ∑ n ( ∑ i n m i n r → i n M n ⋅ M n ) ∑ n M n = ∑ i M i R → c i ∑ i M i . <displaystyle <vec >_=<frac <sum limits _left(<frac <sum limits _>m_><vec >_>>>>cdot M_
ight)><sum limits _
M_>>=<frac <sum limits _M_<vec
>_><sum limits _M_>>.>

Читайте также:  На веб узле возникли неполадки

При переходе к протяженным телам с непрерывным распределением плотности в формулах будут интегралы вместо сумм, что даст тот же результат.

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Центры масс плоских однородных фигур [ править | править код ]

  • У отрезка — середина.
  • У многоугольников :
  • У параллелограмма — точка пересечения диагоналей.
  • У треугольника — точка пересечения медиан (центроид).
  • У правильного многоугольника — центр поворотной симметрии.
  • У полукруга — точка, делящая перпендикулярный радиус в отношении 4 3 π <displaystyle <frac <4><3pi >>>от центра круга.
  • Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа — Гульдина):

    x s = V y 2 π S <displaystyle x_=<frac ><2pi S>>> и y s = V x 2 π S <displaystyle y_=<frac ><2pi S>>> , где V x , V y <displaystyle V_,V_> — объём тела, полученного вращением фигуры вокруг соответствующей оси, S <displaystyle S> — площадь фигуры.

    Центры масс периметров однородных фигур [ править | править код ]

    • Центр масс сторон треугольника находится в центре вписанной окружностидополнительного треугольника (треугольника с вершинами, расположенными в серединах сторон данного треугольника). Эту точку называют центром Шпикера. Это означает то, что если стороны треугольника сделать из тонкой проволоки одинакового сечения, то центр масс (барицентр) полученной системы будет совпадать с центром вписанной окружностидополнительного треугольника или с центром Шпикера.

    В механике [ править | править код ]

    Понятие центра масс широко используется в физике, в частности, в механике.

    Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.

    Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.

    Центр масс в релятивистской механике [ править | править код ]

    В случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:

    r → c = ∑ i r → i E i ∑ i E i , <displaystyle <vec >_=<frac <sum limits _<vec >_E_><sum limits _E_>>,>

    где r → c <displaystyle <vec >_> — радиус-вектор центра масс, r → i <displaystyle <vec >_> — радиус-вектор i -й частицы системы, E i <displaystyle E_> — полная энергия i -й частицы.

    Данное определение относится только к системам невзаимодействующих частиц. В случае взаимодействующих частиц в определении должны в явном виде учитываться импульс и энергия поля, создаваемого частицами [5] .

    Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдается термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass ): оба термина эквивалентны.

    Скорость центра масс в релятивистской механике можно найти по формуле:

    v → c = c 2 ∑ i E i ⋅ ∑ i p → i . <displaystyle <vec >_=<frac <2>><sum limits _E_>>cdot sum limits _<vec

    >_.>

    Центр тяжести [ править | править код ]

    Центр масс тела не следует путать с центром тяжести.

    Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести (действующих на систему) равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес массы P = m·g зависит от параметра гравитационного поля g ), и, вообще говоря, даже расположен вне стержня.

    В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.

    Читайте также:  Скрытый номер кто может звонить

    По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.

    Сущность понятия «центр масс»

    Понятие "центр масс" широко используется в физике для решения задач, связанных с движением тел. Например, математический маятник удобно представить себе как подвешенное на нити тело, вся масса которого сконцентрирована в единой точке. В законе всемирного тяготения тоже речь идет о расстоянии не между телами, а между центрами тел, под каковыми подразумеваются именно центры масс, а не геометрические центры.

    Центр масс — точка, характеризующая размещение и движение исследуемой системы как единого целого.

    Признаком центра масс является то, что если тело подвесить, закрепив за эту точку, оно останется в покое, т.е. не будет раскачиваться или вращаться относительно этого центра. В простейшем случае, если речь идет о симметричном теле с равномерной плотностью, центр масс находится на пересечении осей симметрии рассматриваемого тела. Например, если взять линейку длиной 30 см, то ее центр масс будет расположен на отметке "15 см". Подложив карандаш под эту отметку, легко привести линейку в положение равновесия.

    Попробуй обратиться за помощью к преподавателям

    На практике далеко не все тела, центр масс которых нужно найти, являются симметричными и однородными по плотности. Более того, многие исследуемые объекты представляют собой системы из нескольких тел с различными геометрическими и химическими характеристиками. Для расчетов их разбивают на элементарные фрагменты и производят вычисления поэтапно.

    Нахождение координат центра масс

    Центр масс двух тел с точечными массами $m_1$ и $m_2$ и координатами на координатной прямой $x_1$ и $x_2$ находится в точке, делящей расстояние между этими телами на отрезки с длинами обратно пропорциональными массам рассматриваемых тел.

    Отсюда следует, что чем массивнее тело в такой элементарной системе, тем ближе оно к общему центру масс.

    Расстояние между точечными телами равно:

    $Delta x = x_2 — x_1$

    Пропорция между массами и расстояниями, согласно определению:

    Задай вопрос специалистам и получи
    ответ уже через 15 минут!

    где $l_1$, $l_2$ — расстояния от соответствующих тел до центра масс.

    Выразив, длины через координаты

    $l_1 = x_c — x_1; l_2 = x_2 — x_c$,

    центр масс можно определить как

    где $x_c$ — координата центра тяжести.

    Разложив любую сложную систему на множество элементарных тел с точечными массами, можно обобщить изложенный принцип в виде формулы (для оси абсцисс):

    В большинстве случаев центр масс требуется найти не на координатной прямой, а в двух- или трехмерной системе координат. Для дополнительных осей координаты центра масс ($y_c$, $z_c$) находят по аналогичному принципу.

    Центр тяжести системы тел представляет собой точку, подобную центру масс, но рассчитывается не для масс, а для весов (обусловленных гравитацией сил), действующих на точечные тела, входящие в систему. Центр тяжести определяется так же, как и центр масс, если размеры системы малы в сравнении с радиусом планеты Земля. Он в большинстве случаев с достаточной для практики точностью совпадает с центром масс рассматриваемой системы.

    Найти центр масс двух линеек, изготовленных из одинакового материала, одинаковой толщины и ширины, левые концы линеек совмещены. Длины линеек — 10 и 30 см. Толщиной линеек можно пренебречь.

    Поскольку толщиной можно пренебречь, найти нужно лишь координату центра масс по оси $x$.

    Разобьем мысленно систему на два отрезка. Первый — где толщина линеек складывается. Его координаты — $[0, 10]$. Второй отрезок — где длинная линейка продолжается одна. Его координаты — $[10, 30]$. Примем за единицу измерения массу одного погонного сантиметра линейки. Тогда масса второго фрагмента:

    $m_2 = 30 — 10 = 20$

    На каждый сантиметр первого фрагмента приходится вдвое больше массы, поскольку там сложены две линейки:

    $m_1 = 10 cdot 2 = 20$

    Центры масс отрезков находятся на их осях симметрии, т.е. на середине длины каждого:

    Подставим значения в формулу:

    Ответ: центр масс находится на расстоянии 12,5 см от левого конца системы линеек.

    Так и не нашли ответ
    на свой вопрос?

    Просто напиши с чем тебе
    нужна помощь

    Ссылка на основную публикацию
    Функция датазнач в excel
    Возвращает числовой формат даты, представленной в виде текста. Функция ДАТАЗНАЧ используется для преобразования даты из текстового представления в числовой формат....
    Файловый менеджер для ubuntu server
    Работа с файлами в операционной системе Ubuntu осуществляется через соответствующий менеджер. Все дистрибутивы, разработанные на ядре Linux, позволяют юзеру всячески...
    Файлы dll чем открыть
    Файлы формата DLL открываются специальными программами. Существует 2 типа форматов DLL, каждый из которых открывается разными программами. Чтобы открыть нужный...
    Функция если ячейка содержит определенный текст
    Функция ЕСЛИ СОДЕРЖИТ Наверное, многие задавались вопросом, как найти функцию в EXCEL«СОДЕРЖИТ» , чтобы применить какое-либо условие, в зависимости от...
    Adblock detector